Фигуры из дерева
Строительство домов из оцилиндрованного бревна
Элементы декора
Фонтаны
Цветочницы и Цветники
Беседки
Вазоны для цветов
Светильники садовые
Кованые изделия
Детская площадка
Купели и Бассейны
Садовая мебель
Урны
Заборчики
8(985)924-88-50
Категории
 
 

Солнечный коллектор для горячей воды


Солнечный коллектор — водонагреватель для дома, бассейна

⇒ Горячее водоснабжение частного загородного дома

Солнечную энергию для дома можно получать почти бесплатно и в довольно больших количествах. Почему не даром? Потому что, платить все же придется, но не Cолнцу, а производителям и монтажникам солнечных коллекторов. 

Использование энергии Солнца в системах отопления и горячего водоснабжения частного дома, а также для нагрева воды в бассейне, по мере быстрого роста стоимости энергоносителей, становится все более выгодным. Срок окупаемости солнечного оборудования дома с каждым годом оказывается все меньше.

В странах Евросоюза установка солнечных коллекторов в новых домах является обязательной.

Чем дальше от экватора, чем больше пасмурных дней в году, чем выше загрязнение воздуха, тем меньше солнечной энергии падает на Землю. 

Интенсивность солнечного излучения в южных регионах России, на территории Украины, южнее 52о с.ш., составляет от 1000 до 1350 кВт*ч/м2/год.

В наших южных широтах наибольшая интенсивность солнечного излучения приходится на период с марта по октябрь. В это время потребность в отоплении дома минимальна. Поэтому солнечную энергию в основном используют для нагрева воды в системе горячего водоснабжения дома и для подогрева воды в бассейне.

В системах отопления частного дома солнечные коллекторы применяют реже — только как вспомогательные нагреватели к котлу. Расчеты и практика применения показывают, что использование солнечных коллекторов в системах отопления в наших широтах в большинстве случаев не окупает затраты на их установку.

Следует заметить, что срок окупаемости установок солнечного нагрева очень сильно зависит от стоимости топлива, которое используется в доме для отопления и нагрева воды в системе ГВС. Например, за 1 кВт*час энергии, поступающей из электрической сети, хозяин дома заплатит примерно в 10 раз больше, чем за такое же количество, полученной от котла на природном газе.

В домах, где для отопления или нагрева воды используется электроэнергия, или работают котлы на дорогих видах топлива, установка солнечных коллекторов будет наиболее выгодна.

Оснащение систем отопления и ГВС солнечным коллектором обойдется дешевле, если их установку предусмотреть сразу, на стадии проектирования и строительства дома. Переделки всегда обходятся дороже.

Солнечный коллектор для дома, бассейна

Солнечный коллектор — это аппарат, в котором энергия солнечных лучей преобразуется в тепловую энергию теплоносителя. Теплоноситель переносит тепло от солнечного коллектора к нагревателям систем горячего водоснабжения и отопления. В качестве теплоносителя используют воду или не замерзающие жидкости.

Солнечный коллектор может иметь разную конструкцию. Существуют три принципиальных схемы устройства солнечного коллектора.

Плоский солнечный коллектор

Солнечный плоский коллектор представляет собой металлическую пластину — абсорбер, которая поглощает падающее на неё солнечное излучение. К пластине прикреплены медные трубки, по которым течет теплоноситель.

Пластину абсорбера покрывают слоем никеля, черной меди или другим материалом с высоким коэффициентом поглощения солнечных лучей, но с низким коэффициентом тепловых излучения. Такое покрытие называют селективным.

Некоторые производители выпускают адсорберы из двух сложенных вместе металлических листов. В листах выдавлены канавки, из которых при соединении листов формируются трубки коллектора.

Солнечные лучи нагревает абсорбер, от него тепло передается теплоносителю, температура которого увеличивается.

Абсорбер с трубками устанавливают в теплоизолированный плоский корпус. Сверху корпус коллектора закрывают стеклом. Для улучшения теплоизоляции обычно устанавливают стеклопакет с двойным или тройным остеклением. Стекло должно выдерживать удары града.

Чтобы остекление и поверхность адсорбера не запотевали, в корпусе коллектора оставляют отверстия для вентиляции.

Пластина абсорбера в плоском коллекторе со стеклопакетом может нагреваться до 190 оС.

Панель солнечного водонагревателя с параллельным расположением труб

В плоском солнечном коллекторе трубы, по которым циркулирует теплоноситель, обычно располагают вертикально. Применяют две схемы разводки труб — параллельную и змейкой.

Параллельная схема расположения труб имеет маленькое гидравлическое сопротивление. Коллекторы с параллельными трубами применяют в схемах подогрева воды с естественной циркуляцией теплоносителя.

Панель солнечного водонагревателя с расположением труб змейкой

Укладка труб змейкой позволяет получить чуть больший тепловой эффект, но при этом резко увеличивается гидравлическое сопротивление системы. 

Трубчатый вакуумный солнечный коллектор

Солнечный трубчатый вакуумный коллектор устанавливают на южном скате крыши

Солнечный вакуумный трубчатый коллектор может состоять из нескольких десятков стеклянных труб, в которых создан вакуум. Внутри вакуумных труб находятся трубки с теплоносителем.

На нижнюю часть поверхности труб нанесено зеркальное покрытие, фокусирующее солнечные лучи. А верхняя часть труб покрыта селективным слоем, который пропускает солнечные лучи внутрь, но задерживает отраженное тепловое излучение изнутри стеклянной трубы. 

Наличие вакуума значительно уменьшает тепловые потери, а зеркальное и селективное покрытия еще больше увеличивают эффективность коллектора.

Солнечный коллектор с тепловыми трубками

Солнечный коллектор с тепловыми трубками внешне похож на вакуумный трубчатый, показанный на рисунке выше. Отличия находятся внутри стеклянных вакуумных труб.

В каждой стеклянной трубе коллектора имеется другая, герметично закрытая со всех сторон трубка с легко испаряющейся жидкостью — тепловая трубка. Верхний конец тепловой трубки является частью теплообменника, в котором циркулирует теплоноситель контура солнечного коллектора.

При нагреве солнечными лучами жидкость в тепловой трубке испаряется. Пары поднимаются вверх и конденсируются на поверхности трубки, прикрепленной верхним концом к теплообменнику. Процесс конденсации сопровождается передачей тепла теплоносителю.

Конденсат в тепловой трубке стекает вниз, снова нагревается, испаряется — процесс повторяется и идет непрерывно.

В солнечном коллекторе с тепловыми трубками каждая стеклянная вакуумная труба может быть легко отсоединена и, при необходимости, заменена на новую.

Схемы подключения солнечного коллектора

В схемах отопления и ГВС с солнечным коллектором обязательно должна быть накопительная емкость — аккумулятор тепла. Связано это с тем, что процесс поступления тепла от солнечного коллектора не совпадает по времени и количеству с расходом тепловой энергии потребителями в доме. Солнечную энергию сначала накапливают в аккумуляторе тепла, а затем расходуют по мере необходимости.

Для накопления энергии, получаемой от солнечного коллектора, выгодно использовать накопительный бойлер системы ГВС или буферную емкость системы отопления. Для этого, устанавливают бойлер и буферную емкость с дополнительным теплообменником, к которому и подключают солнечный коллектор.

Теплоноситель в системе нагрева с солнечным коллектором

В системе нагрева с солнечным коллектором, которая работает только летом, в качестве теплоносителя используют воду. Системы на воде подходят для дачных домов сезонного проживания или летних бассейнов.

Для систем отопления и ГВС жилого дома, работающих круглый год, в качестве теплоносителя приходится использовать незамерзающие жидкости — антифриз на основе пропиленгликоля или минеральное масло.

Все жидкости — теплоносители при нагревании расширяются. Поэтому контур нагрева солнечного коллектора обязательно оборудуют расширительным баком.

В контуре с солнечным коллектором существует также опасность закипания жидкости — необходима защита от перегрева и установка предохранительного клапана.

Защита от перегрева контура солнечного коллектора обычно осуществляется путем выбора накопительного бака достаточно большого объема, способного поглотить излишки тепла.

Для удаления воздуха из контура коллектора устанавливают автоматический воздухоотводчик.

Для предотвращения опорожнения накопительного бака трубопровод холодной воды оснащают обратным клапаном.

Расширительный бак, воздухоотводчик, предохранительный клапан контура коллектора аналогичны тем приборам, которые устанавливаются на отопительном котле в доме. 

Схема нагрева воды солнечным коллектором для дачного дома

Схема ГВС с естественной циркуляцией теплоносителя в контуре солнечного коллектора и с электрическим нагревателем в накопительном баке.

Для возникновения в контуре естественной и достаточно интенсивной циркуляции необходимо, чтобы дно накопительного бака было выше солнечного коллектора минимум на 0,5м. (чем больше — тем лучше). Кроме того, стараются уменьшить гидравлическое сопротивление в контуре солнечного коллектора. Для этого увеличивают диаметр труб и сокращают их длину.

В качестве теплоносителя используется незамерзающая жидкость.

Для подогрева воды в пасмурные дни накопительный бак имеет электрический нагреватель.

С целью уменьшения потерь тепла накопительный бак и трубопроводы защищают теплоизоляцией толщиной 50 мм.

Если бак устанавливают на холодном чердаке, то толщину теплоизоляции бака следует увеличить до 100 -150 мм. а трубопроводы с водой разместить под теплоизоляцией бака.

Для дачного дома с сезонным проживанием, только летом, можно контур солнечного коллектора выполнить без теплообменника в баке. В контур коллектора вода будет поступать из нижней части бака, нагреваться и накапливаться в верхней части бака. С наступлением холодов систему необходимо опорожнять от воды.

Эта простая и не дорогая система ГВС подойдет для дачных домов и небольших частных домов с отоплением твердотопливным котлом или печами.

Схема ГВС с солнечным коллектором и бойлером косвенного нагрева 

Схема подключения солнечного коллектора к системе ГВС с накопительным бойлером косвенного нагрева и отопительным котлом с контуром ГВС.

Для подключения солнечного коллектора к системе ГВС с бойлером косвенного нагрева необходимо установить в доме бойлер с двумя теплообменниками.

К нижнему теплообменнику подключают нагревательный контур солнечного коллектора, а к верхнему — контур ГВС отопительного котла.

Если тепла от солнечного коллектора не хватает для нагрева воды, то включается в работу контур ГВС отопительного котла.

Установка циркуляционного насоса в контур солнечного коллектора позволяет установить коллектор в любое положение относительно бойлера, а также уменьшить диаметр трубопроводов.

Схему с бойлером косвенного нагрева удобно применять при отоплении дома газовым котлом.

Схема отопления и ГВС с солнечным коллектором и буферным баком — аккумулятором тепла

Схема подключения солнечного коллектора к системе отопления и ГВС с буферным баком — аккумулятором тепла и отопительным одноконтурным котлом.

Прочитайте статью «Схема отопления и ГВС с буферным баком — аккумулятором тепла» для того, чтобы узнать преимущества, особенности устройства и работы этой системы.

Солнечный коллектор присоединяют к теплообменнику, установленному в буферном баке — аккумуляторе тепла. К буферному баку подключают и контур отопительных приборов дома (на схеме не показан).

Тепловая энергия от всех источников — солнечного коллектора и отопительного котла, аккумулируется в буферном баке. Из буферного бака тепло расходуется и на подогрев воды в системе ГВС, и подается в контур отопления помещений дома.

Схема с буферным баком позволяет использовать солнечную энергию и для отопления, и для горячего водоснабжения.

Схема ГВС с солнечным коллектором и двумя накопительными баками

Схему ГВС с двумя накопительными баками используют при подключении солнечного коллектора к уже работающему оборудованию системы горячего водоснабжения в доме. Когда в уже установленном бойлере отсутствует теплообменник для подключения солнечного коллектора.

Покупка нового бойлера ГВС с двумя теплообменниками и замена старого часто не выгодна. Дешевле приобрести новый бойлер небольшого объема только для контура солнечного коллектора.

Схема подогрева воды для бассейна

Подогрев воды в бассейне можно производить по любой из первых трех схем, которые приведены выше.

Холодная вода со дна бассейна подается циркуляционным насосом по трубопроводу холодной воды в накопительный бак, бойлер или буферную емкость. Горячая вода возвращается обратно в бассейн.

Принудительная циркуляция воды в контуре бассейна обеспечивает перемешивание воды и равномерное распределение температуры по глубине бассейна.

Для бассейнов, работающих только летом, накопительный бак можно исключить из схемы подогрева. Роль накопительного бака может выполнять ванна бассейна.

Автоматизация систем отопления и ГВС с солнечным коллектором

Системы отопления и ГВС с солнечным коллектором обязательно оснащают приборами автоматики.

Автоматика необходима для согласованного управления работой нескольких источников энергии — солнечного коллектора, котла, электрического нагревателя, а также циркуляционных насосов.

Датчики измеряют температуру теплоносителя у источников нагрева, температуру воды в накопительном баке. Блок управления по заданной программе анализирует показатели датчиков и выдает команды  на включение или отключение тех или иных источников нагрева, насосов и клапанов.

Человек имеет возможность задавать параметры регулирования — например, устанавливать максимальную температуру горячей воды. 

Какой солнечный коллектор лучше выбрать

У каждого вида солнечных коллекторов имеется свой минимальный порог интенсивности солнечного излучения, при котором они начинают нагревать теплоноситель.

Плоский солнечный коллектор начинает греть при мощности солнечного излучения 70-90 Вт/м2. Для сравнения — если плоский коллектор не закрыт стеклом, то он начнет греть при мощности излучения более 200 Вт/м2.

Трубчатые солнечные коллекторы с вакуумными трубками начинают греть теплоноситель при мощности излучения более 20 Вт/м2.

Солнечный коллектор поглощает как прямое, так и рассеяное излучение Солнца. Общая интенсивность и соотношение разных видов излучения меняется в зависимости от времени года и суток, состояния облачности.

Например, в наших южных широтах максимальная мощность излучения в декабре около 80 Вт/м2, в апреле и сентябре 350 Вт/м2, а в июне 600 Вт/м2. Причем, летом доля прямого излучения составляет примерно 54%, а зимой только 30%.

Из приведенных выше данных можно сделать вывод, что для того, чтобы солнечный коллектор приносил в дом тепло круглый год, необходим трубчатый солнечный коллектор.

КПД плоского и трубчатого солнечных коллекторов

Мерой эффективности солнечного коллектора является его тепловой коэффициент полезного действия. КПД солнечного коллектора определяется как отношение количества полезной энергии, забираемой теплоносителем, к количеству энергии солнечного излучения, которое падает на поверхность коллектора.

КПД — коэффициент полезного действия для трех конструкций плоского и одного трубчатого солнечных коллекторов

На рисунке показаны графики зависимости коэффициента полезного действия — КПД, для трех конструкций плоского и одного трубчатого коллекторов. Это примерные характеристики при плотности потока солнечного излучения G=700 Вт/м2. По горизонтальной оси редуцированная (приведенная) температура, равная =dT/G, К*м2/Вт., где dT — разность между средней температурой теплоносителя коллектора и наружной температурой воздуха окружающей среды.

Анализируя графики, можно сделать следующие выводы:

Солнечный коллектор работает с максимальным КПД при маленьких значениях редуцированной температуры dT, в режиме с минимально необходимой температурой теплоносителя.

Причем, при малых значениях редуцированной температуры КПД у разных конструкций плоских коллекторов практически одинаков.

Плоский солнечный коллектор, который характеризуется графиком КПД с меньшим углом наклона  к горизонту (линия I на рисунке),  обеспечит нагрев воды при невысокой плотности лучистой энергии и довольно низкой температуре наружного воздуха — весной, осенью.

Плоский коллектор в летнее время, в условиях интенсивного солнечного излучения, имеет более высокий КПД, чем трубчатый. Для систем ГВС, работающих только в теплый сезон выгодно использовать плоские солнечные коллекторы. К тому же, плоский коллектор значительно дешевле трубчатого.

В условиях малой интенсивности солнечного излучения КПД трубчатого коллектора выше, чем плоского. Установка трубчатого коллектора может быть выгодна только для круглогодичного подогрева воды в системах отопления и ГВС, а также в северных широтах. Учитывая высокую стоимость трубчатого коллектора, его установка окупается далеко не всегда.

Выбираем солнечный коллектор для бассейна

С учетом сделанных выше выводов, для подогрева воды в летнем бассейне буквально на несколько градусов, можно выбрать любую конструкцию плоского коллектора. Эффективность при маленькой величине dT будет у всех конструкций плоских коллекторов примерно одинакова.

Выгодно использовать самые дешевые плоские коллекторы с пластиковыми абсорберами, которые могут вообще не иметь остекления.

Поскольку температура теплоносителя в коллекторе будет не намного отличаться от температуры наружного воздуха, то потери тепла при отсутствии стекла будут незначительными. Кроме того, из-за отсутствия стекла немного увеличится количество солнечной энергии, попадающей на адсорбер. Стекло всегда задерживает некоторую часть солнечных лучей.

Расчет размера солнечного коллектора

Из-за неравномерного поступления тепла от солнечного коллектора, в системах ГВС и отопления дома обязательно устанавливают еще один источник нагрева.

Производительность солнечного коллектора рекомендуется выбирать такой, чтобы от него получать не более 2/3 тепловой энергии, необходимой для горячего водоснабжения в доме. Использовать более производительные аппараты не выгодно — не окупятся. 

Для горячего водоснабжения в доме достаточно выбрать солнечный коллектор площадью 1-1,5 м2 в расчете на одного члена семьи.

Солнечный коллектор в системе отопления выбирают так, чтобы получать от него 20-30% тепловой энергии, необходимой для отопления. Размеры солнечного коллектора для целей отопления выбирают из расчета 0,3-0,5 м2 площади коллектора на 1м2 отапливаемой площади дома.

Для закрытого бассейна площадь солнечного коллектора может составлять 40% площади зеркала воды в нем.

В открытом бассейне воду нагревают солнечным коллектором площадью 70% от площади зеркала воды.

Пример расчета размеров площади солнечного коллектора 

Выполним расчет размера солнечных коллекторов для дома с отапливаемой площадью 200 м2, в котором проживают 5 человек. В доме имеется крытый бассейн с площадью воды 30 м2.

Площадь солнечных коллекторов составит:

  • Для нагрева воды в системе ГВС —    5-7,5 м2
  • Для системы отопления дома —         60-100 м2
  • Для подогрева воды в крытом бассейне —      12 м2

Где можно установить солнечный коллектор

Солнечный коллектор можно установить в любом месте — на крыше, на стене, на земле. Важно только установить его под определенным углом к горизонту и на солнечном месте.

Но чаще всего коллектор устанавливают на крыше. Коллектор на крыше не занимает места на участке и получает больше солнечных лучей — там его ничто не затеняет.

На крыше коллектор устанавливают над кровлей. Существуют конструкции коллекторов, которые встраивают в покрытие крыши.

При установке в любом месте следует иметь ввиду, что аппарат требует обслуживания. Поэтому, необходимо продумать, как облегчить доступ к нему.

Кроме того, коллектор достаточно тяжелое устройство. поэтому стропила крыши или стена дома могут потребовать усиления их конструкции.

Лучше всего, установку солнечного коллектора предусмотреть сразу, на стадии проектирования и строительства дома.

Ориентация поверхности солнечного коллектора

Максимальное количество солнечной энергии коллектор будет получать, если его поверхность будет перпендикулярна направлению на солнце.

Направление на солнце постоянно меняется в зависимости от времени года и суток. Поэтому, коллектор устанавливают под некоторым углом к горизонту, который позволяет получать максимум солнечной энергии без изменения положения коллектора.

Солнечный коллектор, который будет работать круглый год устанавливают под углом к горизонту, величина которого примерно равна географической широте местности.

В зимний период, если есть возможность, лучше увеличивать угол наклона еще примерно на 15о.

Если солнечный коллектор будет работать только летом, то угол наклона следует уменьшить до: географическая широта местности минус 15о.

Плоскость солнечного коллектора должна смотреть по направлению на юг с точностью плюс-минус 15о.

Трубчатые вакуумные коллекторы допускают большее отклонение от направления на юг. Они должны освещаться солнцем не менее шести часов в сутки.

Еще Статьи на эту тему: ⇒ Горячее водоснабжение частного загородного дома

domekonom.su

Вакуумный солнечный коллектор для отопления и горячего водоснабжения

Одним из самых популярных и самых универсальных видов альтернативной энергетики в мире являются солнечные коллекторы, с помощью которых потребитель получает тепло и горячую воду практически по нулевому тарифу.

А при сегодняшнем динамичном росте тарифов на энергоносители решение вопроса горячего водоснабжения и теплоснабжения практически любых объектов по назначению, принадлежности и объему за счёт солнца более, чем актуально.

Солнечная энергия - самый крупный энергетический источник на Земле. Количество тепла, поступающего на 1 кв. м поверхности Земли в год, оценивается в 3,16х109 КДж. Общее количество солнечной энергии в 20 тыс. раз превышает современное потребление энергии мировым хозяйством.

Производство установок для использования альтернативной энергии солнца за последние 4 года увеличилось в мире в несколько раз. Предполагают, что к 2020 г. за счет солнечной энергии мировые потребности в электроэнергии будут удовлетворяться на 15-20%.

На сегодняшний день вводится в эксплуатацию более 3 млн. гелиосистем в год, и эта статистика получена не только за счет стран с теплым климатом. Свою эффективность солнечные коллекторы доказали даже в климатических условиях Аляски. Система солнечных коллекторов подходит для всех типов климата. В связи с использованием контроллеров система автоматически поддерживает самые оптимальные параметры циркуляции, имеет режим антизамерзания, обеспечивает комфортную заданную температуру. При отсутствии достаточной солнечной активности контроллер может включать дополнительный электронагреватель, установленный в теплоаккумуляторе.

Производительность системы зависит от параметров солнечного излучения в конкретном регионе. Интенсивность солнечной радиации нашего региона, где около 300 солнечных дней в году, позволяет достигнуть высоких показателей продуктивности солнечных коллекторов.

Технико-экономические расчеты по действующим солнечным системам показывают, что при существующих ценах на органическое топливо, увеличивающихся последние годы, срок окупаемости гелиоустановок с учетом эксплуатационных затрат составляет от 2 до 5 лет, в то время как срок их службы 25-30 лет. Таким образом, использование системы после срока её окупаемости дает дает возможность получать всю вырабатываемую солнечной установкой энергию бесплатно!

При этом гелиоустановки являются экологически чистым источником энергии, к которому можно, в отличие от традиционных котельных, применить термин «срок окупаемости затрат».

Область применения солнечных коллекторов:

  • производственные комплексы любого направления и масштаба;
  • сельскохозяйственные предприятия;
  • учреждения здравоохранения: больницы, поликлиники, санатории, профилактории, центры здоровья и др.;
  • спортивно-оздоровительные комплексы: бассейны открытые и закрытые, стадионы, туристические базы, зоны отдыха;
  • детские учреждения: детские сады, школы, центры детского творчества, летние лагеря и др.;
  • гостинично-туристические комплексы;
  • торгово-развлекательные комплексы, небольшие автономные магазины;
  • рестораны, кафе, столовые и другие пункты общественного питания;
  • мобильные социально ориентированные пункты;
  • частные дома, коттеджи, дачи;
  • офисы;
  • объекты железнодорожного транспорта, портов, МЧС и пр.;
  • автомойки, автозаправочные станции, теплицы и еще многие разнообразные объекты;

– практически везде, где есть холодная вода и дневной свет.

Солнечные водонагреватели позволяют решить целый ряд вопросов:

  • автономное горячее водоснабжение (круглогодичное или сезонное);
  • поддержка полного или дежурного отопления для помещений любой площади;
  • оптимизация существующих систем горячего водоснабжения и отопления;
  • подогрев воды в закрытых или открытых бассейнах;
  • обогрев теплиц;
  • использование горячей воды в технологических целях.

Преимущества солнечных установок:

Существенное уменьшение затрат на горячее водоснабжение, обогрев дома или любого другого здания. Использование солнечных коллекторов дает возможность уменьшить затраты в год: на нагрев воды - на 60%, на отопление - на 30%!

Оптимизация и уменьшение эксплуатационных затрат при отоплении зданий и обеспечении потребителей горячей водой в случае перебоев в электро- и газоснабжении, т.к. система является автономным источником тепловой энергии.

Увеличение срока службы основной или вспомогательной отопительной системы: уже имеющегося бойлера или газового котла в 2 раза, т.к. дает возможность до 97% уменьшить его нагрузку на существующую систему;

Возможность интегрирования в существующую систему теплоснабжения и горячего водоснабжения.

Сохранение природы и экологии в целом, защита здоровья людей за счет отсутствия загрязнения окружающей среды.

Солнечная установка может быть запланирована еще на стадии строительства дома или другого объекта, а может быть подсоединена к существующей системе теплоснабжения. В последнем случае вместо традиционного бойлера устанавливается бойлер гелиосистемы, а на крыше здания - солнечный коллектор. Кроме того, система отопления на солнечных коллекторах идеально соответствует системе водяных теплых полов и обогрева плавательных бассейнов и экономично расходует утилизированную тепловую энергию. Особенную эффективность утилизации энергии окружающей среды имеют комбинированные системы, использующие солнечные коллекторы вместе с тепловыми насосами.

Среди всех типов солнечных коллекторов самыми популярными являются плоские коллекторы и коллекторы с вакуумными трубками.

Вакуумный солнечный коллектор – система, применяющаяся для преобразования энергии солнца в любое время года. При его производстве используются современные материалы, созданные на основе вакуумных нанотехнологий. Удобство в эксплуатации, большая долговечность и эффективность предлагаемых водонагревательных систем гарантирована.

Преимущества использования вакуумного солнечного коллектора:

  • Гелиосистема имеет высокую производительность даже в осенне-зимний сезон.

При производстве вакуумного солнечного коллектора используется наилучший теплоизолятор – вакуум. Общие потери тепла в коллекторе минимальны, т.к. в вакууме не происходит потерь на теплопроводность и конвекцию. Поэтому КПД вакуумного коллектора сохраняется стабильно высоким даже при неблагоприятных погодных условиях – температуре воздуха до -45°С и рассеянном солнечном свете, а его производительность до 40% выше, чем у других видов коллекторов.

  • Каждый солнечный луч используется в гелиосистеме оптимальным образом.

Абсорбер, являющийся важной деталью конструкции вакуумного солнечного коллектора, имеет форму цилиндра, что позволяет максимально эффективно использовать для преобразования каждый солнечный луч от восхода и до заката солнца. Благодаря цилиндрической форме абсорбера вакуумный коллектор в три раза эффективнее и способен улавливать рассеянную энергию солнца по сравнению с коллекторами, имеющими плоскую форму, и может произвести до 40% тепловой энергии больше, чем другие системы с аналогичной площадью абсорбера.

  • Вакуумные солнечные коллекторы отличаются повышенной надежностью.

Вакуумный солнечный коллектор будет радовать Вас своим теплом долгие годы. Залог его высокой долговечности и надежности – использование в конструкции высококачественных современных материалов. Так, все детали, находящиеся в непосредственном контакте с теплоносителем, изготовлены из меди высокого качества, а трубки коллектора выполняются из особого ударопрочного (боросиликатного) стекла, которому не страшен даже град до 35 мм. Вакуумные коллекторы хорошо зарекомендовали себя в регионах с суровым климатом, где нередки шквальные ветра и даже ураганы, т.к. панель коллектора имеет небольшую парусность. Замена вакуумных трубок в случае их повреждения не вызывает особого затруднения, т.к. не требует полной остановки и слива всей системы.

  • После оледенения, покрытия снегом или инеем система быстро вновь готова к работе.

По сравнению с другими видами коллекторов, вакуумный коллектор быстрее возвращается в рабочее состояние, избавляясь от снега, льда или инея и снова готов дарить Вам свое тепло. Это объясняется тем, что стеклянное покрытие коллектора имеет очень небольшую толщину, благодаря чему тепловая инерция прибора сводится к минимуму.

  • Вакуумный солнечный коллектор способен обеззараживать воду.

В нагреваемой коллектором воде под действием высоких температур и вакуума размножение различных бактерий становится невозможным.

  • Вакуумные солнечные коллекторы отличаются простотой монтажа и удобством эксплуатации.

Число желающих сэкономить на расходах на обычные виды энергоресурсов за счет перехода на использование солнечной энергии постоянно растет.

Вакуумные солнечные коллекторы «АНДИ Групп» пользуются достаточно большой популярностью в Центральном и Южном регионах России. Это еще раз подтвердилось на проведенных в сентябре этого года в г.Ростове-на-Дону двух специализированных выставках («15-я юбилейная аграрная выставка» и выставка «МЧС России»), где солнечное оборудование «АНДИ Групп» вызвало большой интерес у представителей разных регионов и слоев населения страны. Производственники и аграрии, владельцы зон отдыха и простые рядовые потребители живо интересовались этим оборудованием. Подтверждением успеха солнечного оборудования «АНДИ Групп» на выставках является награждение ПК «АНДИ Групп» Дипломами выставки «За успешное продвижение на юге России инновационных и энергосберегающих технологий и оборудования».

Руководящий состав МЧС России рекомендовал позиционировать эти солнечные системы на специализированной выставке МЧС в качестве водонагревателей в сложных полевых условиях для создания комфортных и санитарно-гигиенических условий для граждан и личного состава в чрезвычайных ситуациях. Это является убедительным аргументом того, что нет границ для применения солнечных коллекторов ни по территории, ни по назначению, ни по масштабу и сложности системы.

Производственная компания «АНДИ Групп» предлагает оптимальное решение проблемы обеспечения горячей водой как малых так и больших потребителей (от душевых кабин, летних бассейнов и дачных домов до гостиниц, пансионатов, больниц, автозаправочных станций и др.автономных объектов) в условиях сезонного или круглогодичного использования:

Солнечные водонагреватели серия «ДАЧА» модель XF-II и XF-II система без давления. Используются сезонно - с апреля по октябрь месяцы.

Сезонный солнечный коллектор для дачи Производственной компании «АНДИ Групп», поможет решить проблему горячего водоснабжения на Вашем дачном участке, обеспечив Вас горячей водой: для принятия душа, мойки посуды, подогрева летнего бассейна, полива растений и прочих бытовых и хозяйственных нужд.

Солнечные коллекторы серия «УНИВЕРСАЛ» модель CP-II. Проточные солнечные водонагреватели - система под давлением. Солнечные коллекторы с тепловыми трубками Heat Pipe круглогодичного использования.

Преимущества системы является возможность круглогодичной эксплуатации в регионах с умеренным климатом и высокая эффективность солнечного водонагревателя при низкой интенсивности солнечного излучения.

Солнечные сплит-системы. Также такие системы называют всесезонными или раздельными. Это закрытая система, которая может работать под давлением водопровода.

Система обладает малой инерционностью, быстрым выходом на рабочий режим и позволяет обеспечить: круглогодично— горячее водоснабжение; сезонное отопление с экономией традиционных источников тепловой энергии до 70% (в зависимости от географической широты и климатических условий).

ЗАКАЗАТЬ РАСЧЁТ

Если выбор солнечной сплит-системы вызывает у Вас затруднение, оставьте заявку на расчёт и квалифицированные специалисты нашей компании помогут подобрать солнечную водонагревательную систему, удовлетворяющую Вашим потребностям.

andi-grupp.ru

Солнечный коллектор для нагрева воды своими руками

В этой публикации представлены результаты объемных исследований блогера Сергея Юрко. Показаны 3 солнечных коллектора, изготовленные мастером своими руками и наиболее эффективный из них – так называемый 3 пленочный коллектор, он нагревает воду до 60 градусов. Есть более простой 2 пленочный, и он способен доводить воду до 55 градусов. Самый простой и самый дешевый 1 пленочный, но он обеспечивает прогрев только до 35 или 40 градусов.

Мастера покупают изобретения в этом китайском интернет-магазине.

Стоимость одного квадратного метра этих примитивных коллекторов примерно в тысячу раз дешевле заводских аналогов, и поэтому возникает вопрос: а что же такого хорошего в фирменных коллекторах, что они стоят в тысячу раз дороже примитивных, которые может изготовить своими руками любой человек за несколько часов, потратив мизерные деньги.

Будем сравнивать простые коллекторы с дорогими заводскими моделями по эффективности, экономической целесообразности и другим характеристикам. И далеко не всегда это сопоставление в пользу заводских устройств. Ролик на тему: сделаем простейшие солнечные коллекторы и посмотрим, на что они способны. А также выясним, при каких случаях имеет смысл отказаться от дешёвого солнечного тепла с этих примитивных конструкций, чтобы заплатив сотни или тысячи раз дороже, получить такой же эффект от более дорогих устройств.

Личный интерес автора ролика к теме основан на предположении, что заводские солнечные коллекторы являются эволюционным тупиком солнечной тепловой энергетики, поскольку, например, солнечные батареи за последние несколько десятилетий подешевели больше чем в сто раз и график показывает процесс снижения цен. Возникает мысль, что эволюция солнечных коллекторов пошла не по тому пути и поэтому имеет смысл вернуться к самым простым технологиям.

3 простые конструкции коллекторов для нагрева воды от солнца

Черная пленка является единственной, из чего состоит 1-пленочный примитивный коллектор, то есть на пленку наливается вода и очевидно, что во время солнца это вода нагреется. Её можно купить на базаре в любом городе. Мастер приобрел три квадратных метра за 15 гривен. Стоимость коллектора выходит 15 евро цент за квадратный метр.

Но имеет смысл добавить еще одну – прозрачную пленку, которая покроет поверхность нагреваемой воды. Температура нагрева радикально увеличивается, поскольку вторая пленка останавливает испарение воды. Её продают на любом базаре для теплиц и из-за этого второго слоя стоимость коллектора увеличивается до 35 евро центов за квадратный метр.

Но есть еще и 3 пленочный вариант и дополнительная пленка тоже является прозрачной, она увеличит стоимость коллектора до 55 евро центов за квадратный метр. Функция 3 пленки, как и у стекла заводского плоского коллектора, то есть между стеклом и черным абсорбером формируется слой воздуха толщиной несколько сантиметров, воздух является теплоизолятором.

Сколько пленок нужно для хорошего нагрева воды?

Экспериментальные измерения дали неожиданные результаты, поскольку оказалось что в нашем случае результат применения третьей пленки не является таким эффективным, как в случае заводского плоского коллектора – температура нагрева воды увеличивается, но всего лишь на несколько градусов. Причем наша тройка коллекторов может иметь разные конструкции. К примеру 2 пленочная – прозрачная полиэтиленовая пленка, продается на базарах в виде рукава. Вода заливается внутрь рукава, а роль нижней черной пленки выполняют черная поверхность крыши многоэтажки. Аналогичное исследование, но с рукавом из не прозрачной, а черной пленки. Если вторая пленка черная, вариант предпочтительнее только при условии хорошей циркуляция воды через систему. Коллектор нагрел 100 литров воды до 66 градусов. Можно заметить несколько усложнений конструкции, в том числе лист пенополистирола толщинoй 3 сантиметра. но эксперименты показали, что теплоизоляция под коллектором увеличит температуру нагрева, но не радикально.

Эксперимент в августе с нагревом воды при температуре воздуха в тени 35 градусов показал, что пленочный коллектор на хорошей теплоизоляции нагрел воду до 63 градусов и в тот же самый момент другой коллектор нагрел воду до 57 градусов, хотя под ним теплоизоляции нет и его первая пленка лежит прямо на земле.

Дополнительные функции кустарного садового коллектора

Также интересно обратить внимание, что однопленочный коллектор во время дождя выполняет функцию сбора дождевой воды что для некоторых домов и местности может оказаться актуальным. кроме этого, 1 пленочные и 2 пленочные коллекторе ночью могут выполнять функцию градирни, то есть они отбирают тепло из воды, используемой для систем охлаждения. Можно использовать в режиме, когда днем через них циркулирует вода, которую нужно нагревать. а ночью коллектор охлаждает воду баков. днем вода из них используется для отбора тепла. в результате чего она нагревается. и поэтому следующей ночью ее нужно опять охлаждать коллекторами.

Интересно заметить, что высота воды в коллекторах может превышать несколько сантиметров. они являются одновременно и солнечным коллекторам и баком для горячей воды. То есть они работают как хорошо известная черная бочка на летнем душе.

Но очевидно, что после исчезновения солнца вода в коллекторе охлаждается. Для этого случая может оказаться интересным коллектор с тремя слоями пленки, вода в котором охлаждается медленно.

На фото. Стоимость заводских тепловых коллекторов в тысячу раз дороже представленных самодельных.

Статистика по измерениям эффективности самодельных и заводских солнечных нагревателей

1 августа проводил эксперимент по измерению производительности 2 пленочного коллектора. На протяжении солнечного дня измерял температуру воды и заносил в таблицу.

насколько эффективен нагреватель воды с пленкой

В следующий таблице интерпретация полученных результатов, в столбце количество теплоты, которую реально производил коллектор. Описано в примечании фото, как рассчитывалось по результатам измерений температуры. В другом столбце количество солнечной радиации, которая попала на солнечный коллектор. причем важно заметить, что она зависит от угла солнца над горизонтом, точнее от синуса этого угла.

Интересно, что в данный временной промежуток производство тепла коллектором было больше, чем количество солнечной радиации. но никакого парадокса нет, если обратить внимание на разницу температур. В это время температура воздуха была больше, чем воды в коллекторе, и поэтому она нагревалась не только из-за поглощения солнечной радиации, но и вследствие нагрева от более теплого воздуха. но в другие временные промежутки вода была уже теплее воздуха. причем, чем больше разница температур, тем больше тепловые утечки из воды в окружающий воздух. тем меньше полезного тепла производят коллектор. Можно прийти к выводу, что как только температура воды достигнет примерно 60 градусов, она прекратит нагреваться, поскольку упомянутые тепловые утечки сравняются с поступлением энергии Солнца в коллектор.

В правом крайнем столбце таблицы зафиксирована измеренная мощность нагрева коллектора на единицу площади, ее можно сравнить с столбцом с мощностью нагрева одного квадратного метра заводского коллектора в тех же условиях. Описано, как вычислял мощности. Один квадратный метр заводской модели имеет преимущество над такой же площадью самодельного только при работе на высоких температурах воды. а если нужно греть воду с температурой выше 60-70 градусов, то кустарный коллектор не сможет работать вообще. в то же время 1 квадратный метр самодельного теплообменника произведет тепла заметно больше, чем один квадратный метр фабричного, когда температура воды меньше температуры окружающего воздуха.

Результаты объясняются энергетическими характеристиками 2 пленочного коллектора.

А это оценка характеристик других типа примитивных нагревателей.

Приблизительные характеристики заводских плоских коллекторов, представленных в паспорте.

В интернете можно найти такие характеристики практически для любой марки. По таблице видно, что фирменный обменник тепла имеет преимущество по этому коэффициенту, благодаря чему он способен работать на высоких температурах. но с другой стороны самопальный коллектор работает намного лучше заводского в случае, если нужно подогреть воду с температурой ниже воздуха. Например, если нужно нагревать 10 градусную воду подземной скважины во время 30-градусной жары. дело в том, что коэффициент корректнее называть не тепловыми потерями, а коэффициентом теплообмена. Поскольку если вода в коллекторе холоднее воздуха, то в коллекторе нет тепловых потерь, а наоборот, из более теплого воздуха в него поступает дополнительное тепло. Данный коэффициент интерпретируется так, что если разница температур между водой и воздухом увеличивается на 1 градус, то обмен тепла через каждый квадратный метр коллектора увеличивается на 20 ватт.

Эта характеристика (оптический КПД) показывает кпд преобразования солнечной радиации в полезное тепло в условиях, когда температура теплоносителя в коллекторе равна температуре окружающего среды. В примечании описано, почему у простейших коллекторов этот показатель немного лучше, чем у заводских. Но это указан кпд нового чистого коллектора, а примитивные очень чувствительны к грязи. Текст ниже описывает, как много грязи накапливается в них течение эксплуатации.

Грязь и пузырьки в простых самодельных коллекторах

* В воду 1-пленочного коллектора извне приходит очень много разнообразной грязи. В 2-х и 3-пленочных устройствах эта проблема выражается в пылевом налете на верхней пленке, и после высыхания воды дождя или росы эта грязь группируется в непрозрачные пятна, которые могут очень заметно уменьшить КПД коллектора. Но с другой стороны, есть несколько несложных способов удалять эту грязь после дождя. * Из воды тоже выпадает много грязи в виде мелких хлопьев на поверхности воды или крупных хлопьев на дне. Эти выпадения усиливаются из-за нагрева воды. * Также накапливается «белый налет» (на верху 1-й и низу 2-й пленки), который заметно снижает КПД. Он прикрепляется к пленкам очень прочно, т.е. потоком воды не удаляется (и щеткой он оттирается с большим трудом и не полностью). Возможно, это выпадение солей из нагретой воды, возможно, это последствия разложения полиэтиленовых пленок. * Часть грязи в коллекторе может быть объяснена продуктами разложения полиэтилена вследствие УФ-радиации и высокой температуры. Обычно полиэтилен разлагается на перекись водорода, альдегиды и кетоны. В основном, это газы или жидкости, хорошо растворимые в воде. т.е. в осадок они вроде бы не должны выпадать. * КПД коллектора также снижается из-за большого количества газовых пузырьков (диаметром до нескольких миллиметров на верху 1-й и низу 2-й пленки), которые выделяются при нагреве воды (При нагреве уменьшается растворимость газов в воде). Интересно, что при расположении коллектора на земле на его 1-й пленке пузырьков практически нет (но они есть на низу 2-й) * Под 2-й пленкой могут образовываться большие пузыри, а также воздух в складках. Эти участки быстро запотевают, и это уменьшает КПД. * На краях коллектора 2-я пленка может не прилегать к воде: на таких участках низ запотевает и поэтому плохо пропускает солнечную радиацию.

* В 3-пленочных коллекторах могут быть запотевания низа 3-й пленки. Это случается при неправильной установке 2-й пленки (из-за чего пар из коллектора может проникать под 3-ю пленку) или из-за её повреждений. В таких случаях нужно устанавливать 3-ю пленку так, чтобы ветер слегка вентилировал пространство между нею и 3 слоем.

Загрязнение воды коллекторов из-за разложения полиэтиленовых пленок

Это разложение будет из-за одновременного воздействия кислорода воздуха, ультрафиолетовой солнечной радиации и температуры 50-60 град. Полиэтилен разлагается на альдегиды, кетоны, перекись водорода и др. При нагреве в коллекторе каждого 1 куб. м воды его полиэтиленовые пленки будут выделять порядка 1 г продуктов разложения (На 1 кв. м коллектора приходится около 100 г 1-й и 2-й пленок, и за время своей службы они выделят, по очень приблизительным оценкам, около 10 г «продуктов разложения» и нагреют порядка 10 куб. м воды). Но непонятно, сколько из этих 1 мг/ литр перейдет в воду, а сколько улетит в атмосферу, выпадет в осадок на дне коллектора и бака горячей воды, перейдет в тот «белый налет» (о котором я говорил в предыдущем тексте), не выйдет за пределы массы полиэтилена Кроме того, непонятно благоприятное влияние на очистку воды вследствие ее пребывания и нагрева в коллекторе (а там из нее выпадает очень много осадка), а также вследствие пребывания в баке горячей воды. Таким образом, по приблизительным оценкам, в воду поступит 0,1-0.5 мг / литр продуктов разложения полиэтилена, которые распределятся между десятками хим. веществ с концентрациями по 0.001-0,1 мг на литр нагреваемой воды. Поскольку это недалеко от ПДК вредных веществ, консультация с СЭС лишней не будет. Например, согласно стандарту ГН 2.1.5.689-98 «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования»: – Есть ограничения по 13 шт. альдегидов – ПДК от 0,003 мг / литр до 1 мг / литр, например, ПДК формальдегида – 0.05 мг / литр, а самые жесткие требования к бензальдегиду – 0.003 мг / литр – ПДК перекиси водорода – 0,1 мг / литр

– По 3 шт. экзотических кетонов тоже есть ограничения с ПДК 0,1-1,0 мг / литр

Выводы:

1) Если вода «застоялась» коллекторах, то концентрация «продуктов разложения» в ней будет в разы или десятки раз больше. Возможно, такую воду лучше выбрасывать. 2) Желательно использовать более тонкие пленки (они будут давать меньше «продуктов разложения»). 3) Пленки желательно как можно стабилизированные. Например, тепличная предпочтительнее обычной (не подкрашенной) полиэтиленовой, она стабилизируется против воздействия УФ-радиации. Другой пример: полиэтилен высокой плотности медленнее разлагается из-за высокой температуры, чем низкой плотности. 4) Отношение площади коллекторов к потребности объекта (в горячей воде) желательно как можно меньше. Т.е., например, при суточной потребности 10 куб. м горячей воды, станция с 50 кв.м. коллекторов дает загрязнение (концентрация вредных веществ) воды в десятки раз меньше, чем станция с 500 кв.м. коллекторов, в том числе и из-за более низкой температуры нагрева воды коллекторами, что уменьшает скорость разложения полиэтилена. 5) Если 2-я пленка коллекторов будет черная (а не прозрачная), то загрязнение воды должно быть в разы меньше (поскольку УФ-излучение проникает только в верхний слой 2-й пленки). 6) Можно подумать над таким вариантом работы солнечной станции, когда коллекторы нагревают

техническую воду, которая затем передает свое тепло через теплообменник чистой воде ГВС.

Какую лучше применять пленку для сбора солнечного тепла – черную или прозрачную ?

Оптический кпд заметно уменьшается из-за воздушных пузырьков и запотевания второго слоя пленки коллектора. это к тому, что кпд реально эксплуатируемого устройства по всему сроку эксплуатации окажется на несколько десятков процентов меньше. Поэтому не имеет смысла стремиться к дорогим пленкам с большой долговечностью, поскольку за несколько месяцев эксплуатации на них накопится столько грязи, что пленки захочется заменить. Из-за таких проблем с разнообразной грязью склоняемся к тому, что 2 пленка должна быть все таки непрозрачной, а черной.

У этого коллектора черная пленка и нет радикального уменьшения кпд из-за грязи. Но у него есть проблема – солнце нагревает только тонкий верхний слой воды. Тем не менее существует несколько вариантов решения проблемы, которые будут получены после исследований.

Важно иметь ввиду что ветер увеличивает коэффициент теплопотерь примитивных коллекторов, а в случае однопленочного это влияние ветра может быть радикальным, так как увеличиваются потери тепла из коллектора вследствие испарения воды и может дойти до того, что даже в идеально солнечный день, но при сильном ветре и низкой влажности 1-пленочный сможет нагреть воду только на несколько градусов выше температуры окружающего воздуха. Кроме этого коэффициент к1 нужно увеличить на несколько десятков процентов, если под коллектором нет теплоизоляции и он лежит непосредственно на земле, на поверхности крыши и тому подобное.

Во 2 серии этого фильма сравниваются примитивные и заводские коллекторы по темам работы зимой, простоте подключения, экономической целесообразности, областям применения на практике.

Обсуждение здесь.

Вторая часть (о работе зимой)

Зима и солнечный коллек тор «В 900 раз дешевле заводских коллекторов»

3, 4 серии (техобслуживание)

Это солнечное тепло в 15 раз дешевле тепла из газа (и Замена пленок тех примитивных коллекторов)

Обслуживание того солнечного коллектора и особенности его эксплуатации

Другие ссылки: – Конструкция и технология того сверх дешевого солнечного нагревателя:

Как сделать сверхдешевый солнечный коллектор-концентратор

– Эксперимент с заливкой воды в рукав полиэтиленовой пленки:

Пора готовиться к ВЕСНЕ!!! Бак для полива. Объем неограничен.

izobreteniya.net

Обзор типов солнечных коллекторов для организации отопления и горячего водоснабжения дома

Сейчас  много разговоров идет об экологии, сбережении ресурсов. Но, пожалуй, главная причина того, что большинство людей стараются изыскать любую возможность минимизировать энергопотребление – удорожание жизни, чему в немалой степени способствует постоянное повышение тарифов. Наше ЖКХ словно специально подталкивает к этому. Один из вариантов экономии – на отоплении и ГВС. Как это можно сделать с помощью солнечного коллектора, который используется для горячего водоснабжения и отопления, и будет рассказано в статье на нашем сайте better-house.ru. 

Смысл в том, чтобы вместо традиционных источников использовать солнечную энергию, которая, как известно, совершенно бесплатна. Для этого предназначено устройство, называемое гелиоколлектором (солнечным). Оно может быть составной частью как систем горячего водоснабжения, так и контуров отопления.

Не следует его путать с изделием, имеющим созвучное название – солнечная батарея (о них читайте здесь). Принципиальное отличие в том, что от АКБ Потребитель получает энергию электрическую, а от коллектора – тепловую. Не вдаваясь в тонкости физических процессов, коротко можно сказать так – солнечная излучение трансформируется в тепло, которое и используется для повышения температуры теплоносителя.

Схема довольно простая: гелиоколлектор – накопительный бак. Между ними непрерывно циркулирует теплоноситель. Предусмотрена установка и различных дополнительных устройств, в основном, электроники, что делает эксплуатацию более удобной. Обо всех возможностях конкретного изделия можно узнать из сопроводительной документации.

Типы солнечных коллекторов. Их существует несколько. Для нас интересны лишь те, которые можно без особых сложностей использовать в быту, для обеспечения своего дома тепловой энергией.

Модели «вакуумные»

Абсорбер (элемент, который поглощает и аккумулирует солнечную энергию – «черная» панель) находится в вакууме. Он окружает его со всех сторон, тем самым надежно изолируя от окружающей среды. Дополнительно этому способствует селективное покрытие абсорбера, за что он и получил свое второе название. Такое инженерное решение позволяет сократить теплопотери до минимума.

Конструктивно отдельный элемент представляет собой 2 трубки (одна в другой). Это напоминает обыкновенный термос. В пространстве между ними и находится вакуум. Форма цилиндра обеспечивает хорошее поглощение энергии солнца при любом его местоположении на небосводе, будь то раннее утро, полдень или закат. Его лучи всегда падают перпендикулярно продольной оси элемента, что способствует максимальному поглощению радиации.

Прямая теплоотдача

Все элементы соединены с накопительной емкостью системы. Жидкость из нее поступает в трубки (они расположены с наклоном), нагревается и возвращается обратно в бак. В некоторых конструкциях его может и не быть (непрерывная циркуляция). Достоинство такого решения – отсутствие «посредников» в процессе теплообмена.

С теплообменником

Отличие в том, что в накопительном резервуаре находится теплообменник (как правило, медный). На его основе можно монтировать второй контур – ГВС, если первый работает на отопление. При этом можно пользоваться разными теплоносителями. Для ГВС, естественно, вода, для отопительной системы, кроме нее, и антифриз или другая низкозамерзающая жидкость. Это позволяет эксплуатировать установку в холодное время (при «минусе» на улице).

С трубками (тепловыми)

Модели самые эффективные, но и стоят дорого. Конструктивно панель состоит из запаянных трубок (медных), заполненных легкокипящей жидкостью. При нагреве происходит образование пара, который в верхней части конденсирует и стекает вниз. Непрерывно повторяющийся процесс. Температура парообразования известна, поэтому нет смысла объяснять, насколько оригинально такое решение.

Даже при минимальном освещении панели можно получить достаточно тепловой энергии. При отсутствии разбора теплоносителя (ГВС) температура нагрева может достигать +300 ºС.

Все элементы соединены с общей трубой (приемником), по которой проходит теплоноситель.

Плюсы:

  1. Возможность надежной работы и при температурах ниже нуля.
  2. По эффективности превосходят «плоские» аналоги на 45 – 50%.
  3. Универсальность, так как выпускаются в нескольких модификациях.
  4. Хорошая ремонтопригодность.
  5. Отдельные модели отлично функционируют при температурах до -45 0С (с трубками из металла).
  6. Выход одного элемента из строя незначительно отражается на работе коллектора.

Минусы:

«Плоские» модели солнечных коллекторов

Они функционируют на основе парникового эффекта. Такой гелиоколлектор состоит из 3-х основных частей – поглощающего солнечные лучи элемента (абсорбера), теплоизолятора и прозрачного покрытия. Излучение светила свободно проникает внутрь устройства и там аккумулируется. Теплоноситель, который циркулирует по системе и проходит через коллектор, нагревается за счет накопленной тепловой энергии. В статическом режиме (без водоразбора) панель может нагреть жидкость до +200 0С.

Плюсы:

  • Простая конструкция.
  • Дешевле вакуумных моделей.

Минусы:

  • По КПД им значительно уступают.
  • Большая зависимость от освещенности.
  • При отрицательных температурах эффективность резко падает.
  • Ограничение в использовании. Более подходят для южных регионов, а в средних широтах и севернее – малоэффективны.

Разброс цен настолько большой, что имеет смысл остановиться только на отдельных примерах.

  • Коллектор 1,84 м2 (Чехия) обойдется в 5 150 рублей. Это с учетом стоимости всех комплектующих для установки. Такая же модель на 3,6 м2 – 8 250 рублей.
  • Немецкий «Logasol» вертикального монтажа – 29 340 рублей (2 026 х 1 032). Изделие с габаритами 2 070 х 1 145 стоит уже 43 000 рублей.

Остается добавить, что окупаемость таких устройств – не более 5 лет. А если учесть гарантированный эксплуатационный период (до 30 лет), то становится понятно, сколько можно пользоваться тепловой энергией абсолютно бесплатно.

Выводы

  1. Более высокая стоимость обустройства коллекторных конструкций – кажущаяся. По оценкам специалистов, затраты на все соответствующие мероприятия вполне сопоставимы с расходами на монтаж автономных систем, работающих на традиционных видах топлива, например газовых котлов.
  2. Эффективность работы схемы обеспечивается не в последнюю очередь качеством теплоизоляции магистрали, и это нужно иметь в виду.
  3. Если учитывать цены на основные энергоносители (газ, твердые или жидкие виды топлива, то же электричество), то экономия получается весьма существенная, особенно для частного дома, на приусадебном участке которого расположено несколько строений. Нужно понимать, что гелиоколлектор может работать круглый год, главное, чтобы солнце не было закрыто тучами. Причем он аккумулирует излучение не только в том спектре, который для нас видимый. Так что целесообразность монтажа такой конструкции очевидна. Конечно, многое определяется и потребностями конкретного дома. Но даже если панель (или сборка) и не заменит полностью обычные системы, то экономию даст значительную. Кроме того, это и неплохой аварийный вариант (запасной источник энергии).
  4. Солнечные коллекторы можно использовать в любой точке планеты, независимо от особенностей климата. Главное – выбрать оптимальную модель и правильно спроектировать схему. В нашей стране целесообразно монтировать вакуумные солнечные коллекторы. Плоские рекомендовано использовать только в южных регионах.

masterim.guru


Смотрите также

 
 
Корзина
Товаров: 2 шт.
На сумму: 13 300 р.
Купить
Хит сезона