Категории
|
Схема подключения реле тепловогоПодключение теплового реле (схема)Реле тепловое устанавливается для недопущения воздействия на электродвигатели от значительных и продолжительных токовых перегрузок, образующихся при обрыве одной из фаз либо перегрузки вала. Также при помощи ТР осуществляется защита обмотки от последующего повреждения после междувиткового замыкания. Читайте также статью ⇒ Реле напряжения. Что такое тепловое реле?Реле называется тепловым из-за его принципа действия, во многом подобного на принцип работы выключателя-автомата, в котором биметаллические пластины, нагретые электротоком, выполняют разрыв цепи и давят на механизм спуска. Так как тепловое реле в схемах требуется подключать за магнитным пускателем, отсутствует необходимость дублирования функции контактора после размыкания цепей в аварийных случаях. Выбор в пользу такой защиты позволяет достичь существенной экономии материала для силовых контактных групп. Ведь гораздо проще коммутировать малые токи единой управляющей цепи, чем разрывать сразу три контакта под высокой токовой нагрузкой. Совет №1: При подключении прибора следует помнить, что тепловым реле силовые цепи не разрываются напрямую, им подается управляющий сигнал при повышении нагрузок. Обычно в конструкции тепловых реле предусмотрено наличие двух контактов:
После сработки реле оба этих контакта одновременно изменяют сове положение. Устройство и видыРеле тепловые выпускаются нескольких типов, для каждого из них характерны свои конструктивные особенности и область использования. Основными типами являются следующие реле:
РТЛ представляют собой 3-х фазные устройства, предназначенные для защиты электродвигателей от перегрузок, заклинивания ротора, продолжительного пуска, фазного перекоса. Устройства ставятся на клеммные контакты пускателя ПМЛ. Могут самостоятельно работать как защитный прибор с клеммами типа КРЛ. Реле типа РТТ — также трехфазное устройство, обеспечивающее защиту короткозамкнутых двигателей от затяжных пусков, заклинивания, токовых перегрузок, иных, не менее опасных аварийных ситуаций. Благодаря особенностям конструкции реле крепятся к корпусу магнитных пускателей типов ПМА и ПМЕ, а также в качестве отдельного устройства на специальной панели. Трехфазные реле РТИ используются для защиты электромотора от перегрузок, перекосов фаз, стопорения и других тяжелых режимов функционирования. Крепятся к корпусу пускателей КМТ и КМИ. ТРН — тепловой 2-х фазное реле, посредством которого осуществляется контроль за пуском и работой приборов. Оснащается механизмом ручного возврата клемм в первоначальное положение, при этом температура среды на эффективность функционирования реле не влияет. ![]() Твердотельные реле — 3-х фазные устройства, конструкция которого не предусматривает наличия подвижных частей. Реле также не восприимчивы к воздействию окружающей среды, применяются в местах с риском разрыва. В реле типа РТК контроль температуры выполняется посредством щупа, размещенного в корпусе прибора. Термореле типа РТЭ состоит из проводника, изготовленного из специального сплава. При достижении температуры порового значения проводник плавится, тем самым разрывая цепь. Встраивается в конструкцию электромотора. Читайте также статью ⇒Как работает реле контроля напряжения? Как выбрать реле по характеристикам?При подборе реле следует изначально разобраться в его основных параметрах:
Номинальный ток реле должен быть идентичным указанному на электромоторе, к которому устройство будет подсоединяться. Величину тока двигателя можно увидеть на планке, размещенной на его крышке или корпусе. Сетевое напряжение для реле должно быть равным значению сети, в которой оно будет располагаться — 220 либо 380/400 В. Также значение имеет тип и число клемм, так как в контакторах различных типов реализованы различные способы подсоединения. Реле также должно выдерживать мощность электромотора для недопущения ложной сработки. Для двигателей трехфазных следует подбирать реле, обеспечивающее дополнительную защиту от фазного перекоса. Особенности подключенияОбычно монтаж теплового реле осуществляется вместе с магнитным пускателем, выполняющим соединение и запуск электродвигателя. Выпускаются также и устройства, устанавливающиеся как самостоятельный прибор на DIN-рейке либо на монтажной панели — ТРН или РТТ. Если у реле ТРН присутствует лишь пара входящих подключений, фаз в нем все равно три. Отключенный фазный провод выходит с пускателя к двигателю, минуя устройство. Изменение тока в электромоторе происходит пропорционально во всех фазах, потому достаточно выполнять контроль только за двумя из них. ![]() Устройства снабжаются двумя группами клемм в нормально открытой и нормально замкнутой группах. ![]() Ниже представлена схема управления, отключающая мотор от сети при возникновении нештатной ситуации от обрыва фазы либо перегрузки. Вращение двигателя осуществляется в одну сторону, управление включением выполняется с одного места посредством кнопок ПУСК и СТОП. ![]() Автомат подключен и к верхним контактом поступает напряжение. После нажима кнопки ПУСК происходит подключение катушки пускателя А1 и А2 к сети L1 и L2. В представленной схеме установлен пускатель, катушка которого рассчитана на 380 В. При включении пускателя катушкой происходит замыкание дополнительных контактов 13 и 14. Кнопку ПУСК теперь можно отпустить, но контактор останется включенным. Такая схема получила название «Пуск с самоподхватом». Для отключения электромотора от сети нужно обесточить катушку. Проследив на представленной схеме направление течения тока, можно заметить, что отключение произойдет при нажиме кнопки СТОП либо размыкании клемм теплового реле (на схеме прибор обозначен прямоугольником красного цвета). Таким образом, при возникновении нештатной ситуации при сработке реле разрывается цепь, пускатель снимается с самоподхвата, обесточивая при этом электромотор. Перед повторным пуском после сработки необходимо выполнить осмотр механизма для выявления причин внепланового отключения и не включать вновь до их устранения. Зачастую причиной сработки служит повышенная температура внешнего воздуха — такой момент также следует учесть при настройке механизмов и их эксплуатации. Совет№2: В домашних хозяйствах область использования тепловых реле не ограничивается лишь станками и иными механизмами собственного производства. Не лишним было бы применять устройства для установки в системах, контролирующих ток в насосах отопительной системы. Работа циркуляционного агрегата выполняется весьма специфическая. Дело в том, что на улитке и лопастях со временем появляется известковый налет, служащий одной из причин заклинивания и выхода из строя электродвигателя. Применяя приведенные схемы подключения можно собственными силами собрать контролирующий блок и блок защиты. В питающей цепи достаточно выставить номинал теплового реле и подключить контакты. Помимо этого, не менее интересна схема подсоединения теплового реле посредством токовых трансформаторов, предназначенная для применения при подключении мощных двигателей, например, поливочных систем крупных фермерских хозяйств. При добавлении в питающую цепь трансформатор следует иметь в виду параметр трансформации, равный, например, 60/5. Этот параметр означает, что при поступлении через первичную обмотку тока в 60 А, на вторичной обмотке его величина будет равна 5 А. Использование такой схемы позволит сократить расходы на приобретение комплектующих без снижения эксплуатационных характеристик. Читайте также статью ⇒ Подключение указательное реле. ![]() Красным цветом на схеме указаны трансформаторы тока, подключающиеся к амперметру и реле контроля, для визуального представления о проходящих в цепи процессов. Подключение трансформатора выполняется по схеме «звездочка» с одной общей точкой. Обзор моделейВ таблице приведен краткий сравнительный обзор моделей тепловых реле с указанием основных параметров и примерной стоимости.
![]() Ошибки при установкеГлавной ошибкой неопытных мастеров является приобретение и установка реле с параметрами, не подходящими к параметрам электродвигателя. Необходимо внимательно ознакомиться с описанием товара и его характеристиками, приведенными в паспорте устройства. Также при подборе и установке реле часто не учитывается температура внешнего воздуха при эксплуатации устройства. Слишком высокая температура может являться причиной частых срабатываний. Еще одна серьезная ошибка — слишком плотное затягивание контактов устройства при помощи отвертки. При выполнении этой работы следует проявить осторожность, чтобы не вывести реле из строя. Как самостоятельно подключить тепловое реле — обзор схемВы здесь: У каждого мастера на все руки имеется пара задумок соорудить какой-либо станок, точильный, токарный или подъемник. Сегодня поговорим о важном элементе электропривода — тепловом реле, которое еще называют токовым или теплушкой. Данное устройство реагирует на величину тока через него проходящее и в случае превышения установленного значения производит переключение контактов, отключая привод или сигнализируя о внештатной ситуации. В одной из наших статей мы уже рассматривали типы теплушек и принцип их работы, а также по каким параметрам происходит выбор теплового реле. В этой статье мы рассмотрим, как производится установка и подключение теплового реле своими руками. Инструкция будет предоставлена со схемами, фото и видео примерами, чтобы вам были понятны все нюансы монтажа. Что важно знать?Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты). При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:
При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров.К примеру, как на реле РТИ-1314: Особенности монтажаКак правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».
Реле снабжены двумя группами контактов нормально замкнутой и нормально открытой группой, которые подписаны на корпусе 96-95, 97-98. На картинке ниже структурная схема обозначения по ГОСТу: Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК. Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше). Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником). То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке. Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты. Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках. Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети. Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя: Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи! Будет интересно прочитать:
![]() ![]() Инструкция по выбору теплового реле для защиты электродвигателя Тепловая защита электродвигателя. Электротепловое реле.Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя. Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках. 1. Устройство и работа электротеплового реле.Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле. Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя: 1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем; 2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации. Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током. Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку. Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб. По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя. В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле. Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему. «Индикатор» информирует о текущем состоянии реле. Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент. Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим). Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается. Предположим, что сработало реле и своими контактами обесточило пускатель. При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET». Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает. Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания. При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки: Например.Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA. 2. Принципиальные схемы включения электротеплового реле.В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель. При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе. При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются. При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение. При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится. Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится. На фотографиях ниже показана часть монтажной схемы цепей управления: Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя. При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается. И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем. От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель. При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп». Вот и подошел к логическому завершению рассказ о магнитном пускателе.Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя. И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле. Удачи! Схема подключения теплового релеЗдравствуйте уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя. Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ. которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках. 1. Устройство и работа электротеплового реле.Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле. Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя: 1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем; 2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации. Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током. Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку. Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб. По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96 ), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96 ) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя. В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле. Помимо поворотного регулятора на панели управления расположена кнопка «TEST », предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему. «Индикатор » информирует о текущем состоянии реле. Кнопкой «STOP » обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98 ) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент. Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим). Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET » против часовой стрелки, при этом кнопка слегка приподнимается. Предположим, что сработало реле и своими контактами обесточило пускатель. При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96 ) и (97 — 98 ) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET ». Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает. Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания. При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки: Например.Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA. 2. Принципиальные схемы включения электротеплового реле.В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1. через которые подается питание на электродвигатель. При включении автоматического выключателя QF1 фаза «А », питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1. и остается дежурить на этих контактах. Схема готова к работе. При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1 поступает на катушку магнитного пускателя КМ1. пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются. При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А », «В », «С » через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение. При увеличении тока нагрузки через силовые контакты термореле КК1. реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится. Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп ». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится. На фотографиях ниже показана часть монтажной схемы цепей управления: Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96 ) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя. При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается. И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем. От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1. через которые запитывается электродвигатель. При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп ». Вот и подошел к логическому завершению рассказ о магнитном пускателе.Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя. И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле. Понравилась статья — поделитесь с друзьями:Подключение магнитного пускателя с тепловым релеМагнитный пускатель это, по сути, мощное реле специального назначения. Оно сконструировано для коммутации в электрических цепях с обмотками асинхронных двигателей. Это устройство не требует особых знаний для того, чтобы самостоятельно подключить его и пользоваться им. Тепловое реле это ещё одна специальная конструкция электромеханического устройства. Оно в паре с магнитным пускателем выполняет коммутации в электрических цепях, которые содержат обмотки асинхронных двигателей. Особенности монтажаНо при этом тепловое реле срабатывает в отличие от магнитного пускателя не по воле человека, а от перегрузки по току асинхронного двигателя. Его также можно без особых проблем задействовать своими руками в схеме управления асинхронным движком. В связи с этим не будет лишним напомнить умельцам о том, что любые работы по присоединению электрических цепей к сети должны начинаться с гарантированного отключения напряжения в месте подключения с последующим контролем этого индикаторной отвёрткой или тестером.
Особенностью работы магнитного пускателя является его контакт, который, замыкаясь, шунтирует кнопку включения его управляющей катушки. Это позволяет выполнять коммутацию электрических цепей кратковременным нажатием кнопки «пуск», что удобно и легко для пользователя. При подключении пускателя надо будет присоединять нормально разомкнутый контакт и нормально замкнутый контакт. Их вид в самом устройстве и на электрической схеме показан на изображении. Они используются для управления катушкой пускателя и располагаются в управляющем блоке пускателя. Он называется «кнопочный пост». В нём установлены две кнопки. Каждая из них приводит в действие: одна нормально замкнутый контакт и одна нормально разомкнутый контакт. Кнопки окрашены обычно в чёрный цвет (используется для пуска или реверса), и в красный цвет (используется для остановки двигателя отключением катушки пускателя). Схема с фазным напряжением (220 В)Напряжение для питания цепи управления катушки КМ1 магнитного пускателя поступает от фазы L3 и нейтрали N. Контакты кнопок для управления работой катушки соединяются последовательно. Это даёт возможность контакту SB2 приводимому в действие кнопкой «пуск» замкнуть электрическую цепь. Катушка приведёт в действие контакты КМ1 и они замкнут цепи с обмотками двигателя. На обмотках двигателя появится напряжение, и его вал начнёт вращение. Остановка двигателя возможна либо при срабатывании теплового реле, либо при нажатии на кнопку «стоп», которая разомкнёт цепь катушки КМ1. Контакты КМ1 размыкают электрические цепи с обмотками асинхронного двигателя который после этого останавливается. Конструктивно разные модели тепловых реле могут отличаться друг от друга конструкцией основных шести клемм, устройством нагревающихся элементов, контактов и дополнительных регуляторов. Поэтому при инсталляции тепловых реле необходимо подключать и настраивать их в соответствии с техническим паспортом и сопроводительной документацией. Схема с линейным напряжением (380 В)Как видно из схемы напряжение для электрической цепи катушки КМ1 получается от двух фазных проводов L2 и L3. Напряжение между ними для трёхфазной электрической сети составляет 380 В. Других отличий, как в соединениях элементов схемы, так и в её работе в сравнении со схемой с фазным напряжением, нет. Биметаллическая пластина состоит из двух металлов, прочно сваренных между собой по всей поверхности и имеющих различные температурные коэффициенты линейного расширения а. Один металл (инвар) имеет малый коэффициент линейного расширения и называется пассивным. Другой (хромоникелевая сталь) имеет большой коэффициент а и называется активным. При нагревании активный слой стремится удлиниться на большую величину, чем пассивный и, как следствие этого, возникает изгибающий момент. Рис. 1.1. Конструктивная схема теплового реле типа ТРП: 1 — биметаллическая пластина; 2 — нагревательный элемент; ограничивающие выступы; 4 — пружина; 5 — неподвижный контакт; 6 — прыгающий контакт Рис. 1.2. Тепловое реле ТРП. 1 — биметаллическая пластинка; 2 — упор самовозврата; 3 — держатель подвижного контакта; 4 — пружина; 5 — подвижный контакт; 6 — неподвижный контакт; 7 — сменный нагреватель; 8 — регулятор тока уставки; 9 — кнопка ручного возврата Реле серии ТРП на токи 1-600 А в основном используется в магнитных пускателях серии ПА и имеет комбинированную систему нагрева. Исключение — реле ТРП-600 (рис. 1.2). Биметаллическая пластина 1 нагревается как за счет прохождения через нее тока, так и за счет нагревателя 7. При прогибе конец биметаллической пластины воздействует на прыгающий подвижный контакт 5. Реле допускает плавную ручную регулировку тока срабатывания в пределах ± 25 % номинального тока уставки. Эта регулировка осуществляется ручкой 8, меняющей первоначальную деформацию биметаллической пластины. Возврат реле в исходное положение после срабатывания производится кнопкой 9. Возможно исполнение и с самовозвратом после остывания биметалла. Высокая температура срабатывания (выше 200 °С) уменьшает зависимость работы реле от температуры окружающей среды. Реле серии РТ являются аппаратами открытого исполнения с косвенной системой нагрева. Регулирование тока срабатывания реле РТ в небольших пределах осуществляется с помощью рычага, перемещение которого изменяет ход конца биметаллической пластины при нагревании до освобождения защелки. Более широкое регулирование тока срабатывания осуществляется заменой нагревательных элементов. Имеется 56 номеров нагревательных элементов на 0,64-40 А. Реле ТРВ служит для защиты двигателей с легкими условиями пуска, выпускается 20-ти исполнений на токи до 200 А. Реле серии ТРН выпускаются на токи 0,5-40 А с термокомпенсацией. Используются в основном в магнитных пускателях серии ПМЕ и ПА, имеют косвенный нагрев с помощью пластинчатых ни- хромовых нагревателей. На рисунке 1.3 приведена конструктивная схема теплового реле ТРН, предназначенного для магнитных пускателей типов ПМЕ и ПМА (табл. 1.2). Биметаллическая пластина 2 при прохождении тока, превышающего заданный, изгибается и перемещает вправо пластмассовый толкатель 11, связанный жестко с биметаллической пластиной 3, выполняющей роль температурного компенсатора. Отклоняясь вправо, пластина 3 нажимает на защелку 8 и выводит ее из зацепления с пластмассовым движком 5 уставок, в результате чего под действием пружины 10 пластмассовая штанга 7 расцепителя отходит кверху (показана пунктиром) и размыкает контакты 9 в цепи управления магнитным пускателем. Движок уставок можно перемещать, поворачивая эксцентрик 4 и изменяя расстояние между концами пластины 3 и защелкой 8, а значит, и ток срабатывания реле. Температурная компенсация заключается в том, что изгибанию биметаллической пластины 2 при изменении окружающей среды соответствует противоположное по направлению изгибание пластины компенсатора 3. Таким образом достигается независимость тока уставки от окружающей температуры. Ток уставки можно менять в пределах от 0,75 до 1,3 номинального тока нагревательного элемента. Рис. 1.3. Конструктивная схема теплового реле типа ТРН: 1 — нагревательный элемент; 2 — биметаллическая пластина; 3 — биметаллическая пластина температурного компенсатора; 4 — эксцентрик; 5 — движок уставки; 6 — кнопка «Возврат»; 7 — штанга расцепителя (тяга); 8 — защелка; 9 — контакты; 10 — пружина; 11 — толкатель Таблица 1.2 Значения номинальных токов сменных нагревательных элементов тепловых реле типа ТРН и ТРП *Эти модификации устанавливаются только в коробках магнитных пускателей. Тепловые реле типа РТЛ имеют: три полюса; температурный компенсатор; механизм для ускоренного срабатывания при обрыве фазы; регулятор тока несрабатывания; ручной возврат; один размыкающий и один замыкающий контакты; переднее присоединение проводов; несменные нагревательные элементы. Тепловые реле РТЭ выпускается в трех типоразмерах, с диапазоном по току уставки теплового расцепителя от 0,4 до 93 А. Наличие двух пар дополнительных контактов, нормально замкнутых и нормально открытых, значительно облегчает проектирование схем управления. Эти контакты могут использоваться как для самодиагностики устройства, так и для командных цепей. Диапазоны регулировок токов реле типа РТЭ приведены в таблице 1.5. Только правильно отрегулированные тепловые реле могут защитить электродвигатели от перегрузок. Поэтому рассмотрим методы регулировки реле. Уставки регулировки теплового реле можно определить расчетом в такой последовательности: 1. Определяют уставку реле без температурной компенсации: N1 = (Iн дв – Iнэ)/cIнэ, (1.1) где Iн дв — номинальный ток нагрузки электродвигателя; Iнэ — номинальный ток нагревательного элемента теплового реле; с — коэффициент деления шкалы (с = 0,05). 2. Вычисляют поправку на температуру окружающей среды: где Т — температура окружающей среды, оС. 3. Поправка необходима в тех случаях, когда температура окружающей среды ниже максимальной (40 оС) более чем на 10 оС. При значительном изменении температуры окружающей среды (зимой и летом) тепловое реле следует отрегулировать вновь. Находят суммарную уставку реле: которая может быть со знаком «+» или «-». Затем на полученном делении шкалы устанавливают стрелочку регулировочного винта или рычаг. Таблица 1.5 Внешний вид и диапазоны регулировок токов реле типа РТЭ Часто электродвигатели и их пускозащитная аппаратура находятся в различных температурных условиях, например, электродвигатель установлен внутри животноводческого помещения, а пускозащитная аппаратура — снаружи. В этих случаях правильно отрегулировать тепловое реле почти невозможно. Корректировкой уставки, полученной в результате расчета делений шкалы, можно провести приближенную регулировку тепловых реле. Для их точной регулировки применяют специальные приспособления — стенды. В сельскохозяйственном производстве в основном используются электродвигатели мощностью до 30 кВт. Для их защиты применяют различные тепловые реле, которые регулируют при помощи приспособления, создающего ток нагрузки в пределах 0-50 А. На рисунке 1.4 показана принципиальная электрическая схема лабораторного стенда для проверки и регулировки тепловых реле. Такой стенд может быть успешно изготовлен в условиях хозяйства. К вторичной обмотке маломощного нагрузочного трансформатора TV2 подключаются нагревательные элементы тепловых реле (КК1 и КК2). Напряжение первичной обмотки плавно регулируется лабораторным автотрансформатором (ЛАТР) TV1. Ток нагрузки теплового реле КК1 фиксируется амперметром рА (рис. 1.4, а). Ток нагрузки реле КК2 фиксируется амперметром рА, включенным во вторичную цепь через трансформатор тока TI (рис. 1.4, б). Так как трансформатор TV2 нагружен малым сопротивлением нагревательного элемента теплового реле и во вторичной цепи течет большой ток, вторичная обмотка трансформатора должна быть выполнена из провода большого сечения, рассчитанного на ток нагрузки 50 А. Число витков вторичной обмотки нагрузочного трансформатора выбирают из условия, что необходимо получить достаточное напряжение для регулировки маломощных тепловых реле, например, ТРН-10 А, нагревательные элементы которых имеют относительно большое сопротивление. Из этих условий определяется значение максимального вторичного напряжение порядка 4 В. Рис. 1.4. Принципиальная электрическая схема для проверки и регулировки тепловых реле Тепловое реле, например, типа ТРН проверяют следующим образом. Напряжение на схему подают через контакты КМ магнитного пускателя путем нажатия кнопки SB1 «Пуск». К вторичной обмотке нагрузочного трансформатора TV2 подключают сначала один нагревательный элемент КК1, а контакты теплового реле КК1 включают в цепь сигнальной лампы HL3. Ручку автотрансформатора TV1 устанавливают в нулевое положение и подают напряжение. Затем поворотом ручки вправо устанавливают ток I = 1,5 1н дв и секундомером или часами с секундной стрелкой контролируют время срабатывания реле (момент погасания сигнальной лампы HL3). Далее то же самое выполняют при подключенном втором нагревательном элементе теплового реле. Если время срабатывания теплового реле хотя бы одного из нагревательных элементов не соответствует норме, тепловое реле следует отрегулировать. Для проверки тепловых реле следует использовать их уточненные характеристики, однозначно определяющие время срабатывания Т в зависимости от значения перегрузки k (рис. 1.5). Тепловое реле типа ТРН регулируют в следующем порядке: • Реле осматривают и проверяют, нет ли механических дефектов. • Проверяют, соответствуют ли номинальный ток нагревательных элементов реле номинальному току нагрузки защищаемого электродвигателя. При необходимости нагревательные элементы заменяют. • Проверяют, не согнуты ли нагревательные элементы. • Проверяют расстояние между нагревательными элементами и биметаллическими пластинками, их взаимное расположение при температуре 20 оС. Если расстояние от обоих нагревательных элементов до пластинок неодинаковы, необходимо изменить положение нагревательных элементов, отпустив, а затем снова затянув винты их крепления. • Регулировочный эксцентрик уставок теплового реле переводят в положение «+5». • Тепловое реле подсоединяют к регулировочному устройству (рис. 1.4) и устанавливают ток нагрузки нагревательного элемента в 1,5 раза больше номинального тока защищаемого электродвигателя. Через 145 с (70 с для теплового реле ТРН-10 А) эксцентрик плавно поворачивают в направлении к положению «-5» до срабатывания теплового реле. После интенсивного (12-15 мин) охлаждения теплового реле (например, настольным вентилятором) к регулировочному устройству подключают второй нагревательный элемент и снова устанавливают ток нагрузки 1,5 1н дв. Если за 145 с (70 с для теплового реле ТРН-10 А), тепловое реле не срабатывает, плавно поворачивают регулировочный винт против хода часовой стрелки до срабатывания. Если тепловое реле сработало раньше, чем через 145 с (70 с для ТРН-10 А), регулировочный винт необходимо повернуть по ходу часовой стрелки на один оборот. Затем тепловое реле охлаждают и регулировку повторяют, чтобы оно сработало от второго нагревательного элемента за 145-150 (70-75) с. Рис. 1.5. Уточненные средние защитные характеристики для тепловых реле: а — ТРН-Ю(А); б — ТРН-10; ТРН-25, ТРН-40; в — ТРП-25; г — ТРП-60 Если тепловое реле будет срабатывать от обоих нагревательных элементов, то проводят окончательную его регулировку. Для этого оба нагревательных элемента соединяют последовательно и подключают к регулировочному устройству, а регулировочный эксцентрик устанавливают в положение «+5». Снова устанавливают ток нагрузки 1,5 1н дв и через 145 (70) с плавно поворачивают эксцентрик по направлению к положению «-5» до срабатывания теплового реле. После этого тепловое реле будет точно отрегулировано. Если во время регулировки эксцентрик находится в положении «+5», а ток в нагревательном элементе равен 1,5 1н дв и тепловое реле срабатывает раньше чем за 145 (70) с, то необходимо заменить нагревательный элементы, выбирая их по большему номинальному току. Если, наоборот, при этом же токе нагрузки и положении регулировочного эксцентрика «-5» тепловое реле не срабатывает за 145 (70) с, нагревательные элементы также необходимо заменить, только выбрать их следует по меньшему номинальному току. Затем тепловое реле регулируют по рассмотренной методике. У тщательно отрегулированных тепловых реле типа ТРП и ТРН при комнатной температуре защитные характеристики мало отличаются от уточнённых средних, однако в холодном состоянии они не обеспечивают защиту электродвигателей, заклиненных и не запустившихся при обрыве фазы. Источники: http://sesaga.ru/teplovaya-zashhita-elektrodvigatelya-elektroteplovoe-rele.html, http://podvi.ru/elektromontazhnye-izdeliya/magnitnyj-puskatel-i-teplovoe-rele.html, http://www.eti.su/articles/nizkovoltnaya-tehnika/nizkovoltnaya-tehnika_1447.html |
Корзина
Хит сезона
|