Фигуры из дерева
Строительство домов из оцилиндрованного бревна
Элементы декора
Фонтаны
Цветочницы и Цветники
Беседки
Вазоны для цветов
Светильники садовые
Кованые изделия
Детская площадка
Купели и Бассейны
Садовая мебель
Урны
Заборчики
8(985)924-88-50
Категории
 
 

Двигатель асинхронный однофазный с пусковой обмоткой


Однофазный асинхронный двигатель схема подключения

Используемые в настоящее время бытовые приборы в своем подавляющем большинстве работают при помощи однофазного асинхронного двигателя. Максимальная мощность такого двигателя не превышает 500 Вт.

Однофазный асинхронный двигатель: принцип работы

Однофазный двигатель работает за счет вращающегося магнитного поля, которое возникает при смещении в пространстве двух обмоток статора, соединенных параллельно, относительно друг друга. Важным условием работы однофазного двигателя является сдвиг по фазе токов обмоток. Для этого в конструкции двигателя предусмотрен фазосмещающий элемент (как правило, это конденсатор), он подключен последовательно одной из статорных обмоток. Роль фазосмещающего сетевого элемента может выполнять активное сопротивление или индуктивность.

В том случае если при работе двигателя цепь обмотки разрывается, прекращается движение магнитного потока (Ф) статора. Происходит инерционное вращение ротора, поэтому, поток остается вращающимся по отношению к обмотке ротора и наводит ЭДС, силу тока (I) и собственный магнитный поток (Ф), при этом движение магнитного потока (Ф) ротора совпадает со статорным магнитным потоком.

Магнитный поток ротора изменяется. Данное действие основывается на синусоидальном законе согласно которому, изменяя направление на противоположное, ротор остается в состоянии вращения. В связи с этим запуск мотора возможен в том случае если наличествует внешний фактор, который способен осуществить возвратное вращательное движение ротора в первоначальное направление.

Так как при запуске однофазного двигателя применяется пусковая катушка с применением фазосмещающего элемента. Сопротивление активного типа используется в этом роде очень часто, в связи с дешевизной.

После запуска двигателя возникает отключение обмотки действующей для запуска. Обмотка пуска работает в кратковременном режиме, и для ее изготовления применяется более тонкий провод, чем идет на изготовление рабочей обмотки.

Подключение однофазного асинхронного двигателя

Рис. №1.Схемы подключения асинхронного двигателя к однофазной сети

Для подключения однофазного асинхронного двигателя к однофазной сети прибегают к помощи резистора, используемого для запуска, и присоединенного к пусковой катушке (обмотке) последовательным методом, таким образом, между токами, которые присутствуют в обмотке двигателя, наблюдается сдвиг фаз на 30 о. этого хватает для запуска асинхронной машины в работу. В конструкции двигателя, в котором присутствует сопротивление пуска, наличие фазового угла объясняется неодинаковым комплексным сопротивлением в электрических цепях двигателя.

Рис. №2. Схема включения асинхронного однофазного двигателя с распределенной статорной обмоткой, используемой в качестве привода активатора стиральных машин бытового назначения.

Кроме, использования сопротивления пуска применяется подключение однофазного двигателя к однофазной цепи с конденсаторным пуском. Двигатель, выполняющий эту операцию, будет использовать расщепленную фазу. Особенность этого способа в том, что вспомогательная катушка, в которую встроен конденсатор используется в момент времени запуска. Чтобы достигнуть максимально возможного эффекта сдвиг токов относительно обмоток должен достигать максимально высокого значения угла – 90 о .

Среди разнообразия элементов, используемых для сдвига фаз, только использование конденсатора дает возможность получения максимально лучшего пускового эффекта однофазного асинхронного двигателя .

Однофазный двигатель с расщепленной фазой и экранированными полюсами

При рассмотрении однофазных электродвигателей нельзя забыть о моделях двигателей в конструкции, которых применяются экранированные полюса, в такой машине присутствует расщепленная фаза и короткозамкнутая вспомогательная обмотка. Статор такого двигателя имеет явно выраженные полюса, каждый из которых разделен аксиальным пазом на две неодинаковые части, на меньшей части находится короткозамкнутый виток.

При присоединении статора двигателя в электрическую сеть, магнитный поток, для которого характерно пульсирующее действие и созданный в магнитопроводе машины, делится на 2 части. Движение одной из них идет по части полюса без экрана, вторая следует по части полюса покрытой экраном. Индуктивность витка приводит к отставанию тока по фазе от наведенной магнитным потоком ЭДС. Магнитный поток короткозамкнутой обмотки создает результирующий поток, который движется в экранированной части полюса. В разноименных частях полюсов наблюдается сдвиг разных магнитных потоков на определенное значение угла, а также на разницу во времени.

Недостаток этих моделей заключается в значительных электрических потерях, которые присутствуют в витках обмотки замкнутой накоротко.

Используется в конструкции тепловентиляторов и вентиляторов.

Однофазный двигатель с ассиметричным магнитопроводом статора

Особенность конструкции заключается в наличии явно выраженных полюсов, расположенных на несимметричном сердечнике, изготовленным шихтованным способом. Конструкция ротора короткозамкнутая, тип обмотки – «беличья клетка». В конструкции такого двигателя характерно отсутствие элементов для сдвига по фазе. Улучшение пусковой характеристики достигается добавление в конструкцию магнитных шунтов.

Рис. №3. Чертеж асимметричного статора асинхронной машины.

Недостатки этих машин.

  1. Малый КПД.
  2. Невозможность реверсирования.
  3. Невысокий пусковой момент.
  4. Сложность операций по изготовлению магнитных шунтов.

Несмотря на наличие недостатков, однофазные асинхронные машины широко используются для конструирования бытовой техники, причина в невысокой мощности бытовой электрической сети, которой соответствует мощность однофазных асинхронных двигателей.

Еще материалы по теме:

Самостоятельное проектирование и изготовление вертикального ветряка на основе асинхронного двигателя Экономитель воды – аэратор: примеры использования и принцип работы Вольтметр. Устройство, принцип работы, виды и характеристики Все условия параллельной работы трансформаторов

Однофазный асинхронный двигатель, схема подключения и запуска

Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

Отличие от трехфазных двигателей

Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

  1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
  2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

Схема подключения коллекторного электродвигателя в 220В

Схема подключения однофазного асинхронного двигателя (схема звезда)

Как это работает

Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

Основные схемы подключения

В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

однофазный асинхронный двигатель и конденсатор

Различают три основные способа запуска однофазного асинхронного двигателя через:

  • рабочий;
  • пусковой;
  • рабочий и пусковой конденсатор.

В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

Другие способы

При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

С экранированными полюсами и расщепленной фазой

В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

С асимметричным магнитопроводом статора

Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

Подбор конденсатора

Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

Керамический и электролитический конденсатор

Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

Поделиться с друзьями:

Подключение однофазного и трехфазного электродвигателя к сети 220 В

Очень часто бывает, что механика в стиральной машине, пылесосе, электродрели полностью выходит из строя, и выгодней будет купить новую бытовую технику, чем починить безнадёжно устаревшие домашние электроприборы.

Из кучи оставшихся от данных устройств запчастей, как правило, самым ценным элементом будет электродвигатель, которому можно найти достойное применение, подключив в сеть 220В.

В подобных электроприборах изредка встречается полноценный трёхфазный двигатель, и скорее всего там окажется однофазный коллекторный или асинхронный электродвигатель, у которого может оказаться изрядный запас прочности и ресурса подшипников для применения в качестве привода насоса, компрессора, вентилятора, точила, мини-станка, овощерезки, газонокосилки и т.д.

В данной статье будет рассказано о том, как подключить однофазный электродвигатель в сеть 220 В, в зависимости от его типа.

Принцип действия коллекторного двигателя

В коллекторном электродвигателе, встречающемся в стиральных машинах и электродрелях, имеются обмотки на статоре и роторе.

Роторные обмотки намотаны в виде рамок и помещаются в специальных пазах, а их переключение происходит при помощи коллекторных выводов и контактов в виде графитовых щёток.

ротор коллекторного двигателя

Устройство ротора выполнено таким образом, чтобы в любой момент времени под напряжением находилась только одна рамка, магнитное поле которой перпендикулярно полю обмотки статора.

Электромагнитное взаимодействие полярных магнитных полюсов стремится повернуть ротор так, чтобы направленность его магнитного поля совпала с полем статора, подобно стрелке компаса.

Но, как только ротор поворачивается на определённый угол, контакты рамки выходят из соприкосновения со щётками, и включаются следующая обмотка, и процесс повторяется, создавая непрерывный момент вращения.

Подключение в сеть 220 В коллекторного электродвигателя

Схема коллекторного электродвигателя устроена таким образом, что направления токов в обмотке статора ротора и рамке ротора всегда совпадают, независимо от фазы переменного напряжения. Из-за совпадения направления токов, возникающие магнитные поля будут всегда перпендикулярными, что и будет вызывать момент вращения вала.

Поэтому очень важно установить перемычку на выводах двигателя, для последовательного соединения статорной и роторной обмоток. Поменяв местами выводы обмоток статора или ротора можно изменить направление вращения вала двигателя.

Для полноты картины нужно проследить путь тока – один из выводов от щётки коллектора подключается в сеть 220 В (допустим фаза, но это не имеет значения). Вывод другой щётки нужно подсоединить к одному выводу статора при помощи перемычки. Оставшийся вывод от статора подключается в сеть 220 В (ноль), замыкая цепь.

Принцип действия однофазного асинхронного электродвигателя

В отличие от коллекторного двигателя, в однофазном асинхронном электродвигателе с короткозамкнутым находящимся в состоянии покоя ротором,

устройство асинхронного двигателя

в котором индуцируются токи, создающие магнитное поле, взаимодействующее с электромагнитным полем катушки, векторы возникающих сил (М, -М) уравновешивают друг друга. Это означает, что при включении в сеть вал мотора вращаться не будет, и для его запуска нужен начальный вращательный момент S.

Можно рукой раскрутить вал и подать напряжение сети, тогда двигатель наберёт обороты. Многие так и делают, запуская точило, но такой способ совершенно неприемлем, если нужно раскрутить вращающиеся ножи овощерезки или газонокосилки.

Поскольку в трёхфазном электродвигателе момент вращения задан конструктивно при помощи расположения обмоток и смещения фаз трёхфазной сети, то в однофазном моторе для запуска применяют дополнительную пусковую обмотку, благодаря которой создаётся вращательный момент смещения ротора.

Схема подключения 1

Смещения фазы тока дополнительной обмотки относительно синусоиды напряжения 220 В создаётся при помощи конденсатора.

Схема подключения 2

Подключение в сеть асинхронного однофазного электродвигателя. На корпусе однофазного асинхронного электродвигателя должна быть схема подключения, где указываются выводы основной и дополнительной обмотки, а также емкость конденсатора.

Но, если схема где-то затерялась, то нужно определить рабочую и пусковую обмотку, измерив и сравнив сопротивления – у основной оно должно быть меньшим. Для этого нужно взять мультиметр, выставить диапазон для измерения в Омах, и поочерёдно измерить сопротивление между выводами.

Определение пусковой и рабочей обмотки

Поскольку часто данные обмотки имеют общий вывод, то его определяют опытным путём – сумма сопротивлений, измеренных от данного провода обмоток должна соответствовать суммарному сопротивлению подключённых последовательно обмоток. Если конструкция двигателя позволяет, то определить принадлежность выводов можно визуально – у проводов рабочей обмотки поперечное сечение (толщина) больше.

рабочая и пусковая обмотки

Рабочая обмотка подключается к напряжению 220 В напрямую, а пусковая – последовательно с конденсатором. Если обмотки соединены внутри мотора, то такая схема не позволит изменять направление вращения. Если из мотора выходят четыре провода от двух обмоток, то направление вращения будет зависеть выбора выводов для их соединения в общий отвод.

Выбор вращения двигателя

Существуют электродвигатели с идентичными обмотками – их называют двухфазными.

Режимы однофазных двигателей

Поскольку однофазные и двухфазные двигатели для запуска требуют применения конденсатора. то такие электродвигатели называют конденсаторными. Существует несколько режимов работы конденсаторного двигателя:

  • С пусковым конденсатором и дополнительной обмоткой, которые подключаются только на время запуска. Емкость выбирается исходя из 70 мкФ на 1 кВт мощности двигателя;
  • С рабочим конденсатором, емкостью 23-35 мкФ и дополнительной обмоткой, подключённой всё время;
  • С рабочим и пусковым конденсатором, подключаемым параллельно рабочему.

Применяется в случаях с тяжёлым запуском двигателя. Емкость рабочего конденсатора в два-три раза меньше номинала пускового (70 мкФ/1 кВт).

Из-за сложности формул расчёта принято выбирать емкости, исходя из приведённых выше пропорций. В реальности, подключив электродвигатель, нужно проследить за его работой и нагревом. Если двигатель будет заметно нагреваться в режиме с рабочим конденсатором, то его емкость необходимо уменьшить. Подбирать конденсаторы нужно с рабочим напряжением не меньше 450 В.

Запуск двигателя с пусковым конденсатором осуществляется вручную с помощью кнопки управления,

или схемы с двумя контакторами, один из которых (пусковой) не имеет самоподхвата и удерживается током замкнутого кнопочного контакта или реле времени. Некоторые конденсаторные электродвигатели имеют центробежный контакт, используемый при запуске, размыкающийся при наборе оборотов.

Подключение трёхфазного двигателя в сеть 220 В

Подобным способом с применением конденсатора подключается трёхфазный двигатель по схеме «звезда» или «треугольник».

Расчёт емкости производится исходя из рабочего напряжения и тока,

или паспортной мощности мотора.

По аналогии с однофазным электродвигателем, в случае тяжёлого запуска трёхфазного двигателя, применяется пусковой конденсатор, емкость которого в два-три раза выше номинала рабочего.

Подключая трехфазный электродвигатель в сеть 220 В при помощи пускового конденсатора, нужно помнить, что при такой схеме подключения мотор не будет работать с полной отдачей и не разовьет максимальную мощность.

Для полноценной работы такого двигателя нужны три фазы, получить которые можно проведя сеть 380 В, или использовать сложную электронную схему, рассчитанную под конкретную мощность, генерирующую смещение фаз при помощи мощных силовых полупроводниковых ключей.

Имея много различных конденсаторов, но не находя нужного значения емкости, можно соединять их параллельно или последовательно.

Комбинируя данные способы подключения, можно приблизиться к требуемому номиналу емкости.

Похожие статьи

Как подключить трехфазный счетчик

Счетчик электрический трехфазный

Ремонт коллекторных электродвигателей

Перемотка статора асинхронного электродвигателя

Защита электродвигателя автоматическим выключателем. Практические расчеты

Источники: http://enargys.ru/podklyuchenie-odnofaznogo-dvigatelya/, http://tokidet.ru/elektrooborudovanie/elektrodvigateli/odnofaznyj-asinhronnyj-dvigatel.html, http://infoelectrik.ru/elektrodvigateli/kak-podklyuchit-odnofaznyj-dvigatel.html

Однофазный асинхронный двигатель: как устроен и работает

Само название этого электротехнического устройства свидетельствует о том, что электрическая энергия, поступающая на него, преобразуется во вращательное движение ротора. Причем прилагательное «асинхронный» характеризует несовпадение, отставание скоростей вращения якоря от магнитного поля статора.

Слово «однофазный» вызывает неоднозначное определение. Связано это с тем, что термин «фаза» в электрике определяет несколько явлений:

  • сдвиг, разность углов между векторными величинами;

  • потенциальный проводник двух, трех или четырехпроводной электрической схемы переменного тока;

  • одну из обмоток статора или ротора трехфазного двигателя либо генератора.

Поэтому сразу уточним, что однофазным электродвигателем принято называть тот, который работает от двухпроводной сети переменного тока, представленной фазным и нулевым потенциалом. Количество обмоток, вмонтированных в различных конструкциях статоров, на это определение не влияют.

Конструкция электродвигателя

По своему техническому устройству асинхронный двигатель состоит из:

1. статора — статической, неподвижной части, выполненной корпусом с расположенными на нем различными электротехническими элементами;

2. ротора, вращаемого силами электромагнитного поля статора.

Механическое соединение этих двух деталей выполнено за счет подшипников вращения, внутренние кольца которых посажены на подогнанные гнезда вала ротора, а внешние вмонтированы в защитные боковые крышки, закрепляемые на статоре.

Ротор

Его устройство у этих моделей такое же, как у всех асинхронных двигателей: на стальном валу смонтирован магнитопровод из шихтованных пластин на основе мягких сплавов железа. На его внешней поверхности выполнены пазы, в которые вмонтированы стержни обмоток из алюминия или меди, закороченные по концам на замыкающие кольца.

В обмотке ротора протекает электрический ток, индуцируемый магнитным полем статора, а магнитопровод служит для хорошего прохождения создаваемого здесь же магнитного потока.

Отдельные конструкции ротора у однофазных двигателей могут быть выполнены из немагнитных или ферромагнитных материалов в форме цилиндра.

Статор

Конструкция статора также представлена:

  • корпусом;

  • магнитопроводом;

  • обмоткой.

Его основное назначение заключается в генерировании неподвижного или вращающегося электромагнитного поля.

Статорная обмотка обычно состоит из двух контуров:

1. рабочего;

2. пускового.

У самых простых конструкций, предназначенных для ручной раскрутки якоря, может быть выполнена всего одна обмотка.

Принцип работы асинхронного однофазного электрического двигателя

С целью упрощения изложения материала представим, что обмотка статора выполнена всего одним витком петли. Ее провода внутри статора разносят по кругу на 180 угловых градусов. По ней проходит переменный синусоидальный ток, имеющий положительные и отрицательные полуволны. Он создает не вращающееся, а пульсирующее магнитное поле.

Как возникают пульсации магнитного поля

Разберем этот процесс на примере протекания положительной полуволны тока в моменты времени t1, t2, t3.

Она проходит по верхней части токопровода по направлению к нам, а по нижней — от нас. В перпендикулярной плоскости, представленной магнитопроводом, вокруг проводника возникают магнитные потоки Ф.

Изменяющиеся по амплитуде токи в рассматриваемые моменты времени создают разные по величине электромагнитные поля Ф1, Ф2, Ф3. Поскольку ток в верхней и нижней половине один и тот же, но виток изогнут, то магнитные потоки каждой части направлены встречно и уничтожают действие друг друга. Определить это можно по правилу буравчика или правой руки.

Как видим, при положительной полуволне вращения магнитного поля не наблюдается, а происходит только его пульсация в верхней и нижней части провода, которая еще и взаимно уравновешивается в магнитопроводе. Этот же процесс происходит при отрицательном участке синусоиды, когда токи изменяют направление на противоположное.

Поскольку вращающееся магнитное поле отсутствует, то и ротор останется неподвижным, ибо нет сил, приложенных к нему для начала вращения.

Как создается вращение ротора в пульсирующем поле

Если придать ротору вращение, хотя бы рукой, то он будет продолжать это движение. Для объяснения этого явления покажем, что суммарный магнитный поток изменяется по частоте синусоиды тока от нуля до максимального значения в каждом полупериоде (с изменением направления на противоположное) и состоит из двух частей, образуемых в верхней и нижней ветвях, как показано на рисунке.

Магнитное пульсирующее поле статора состоит из двух круговых с амплитудой Фмакс/2 и двигающихся в противоположных направлениях с одной частотой.

nпр=nобр=f60/p=1.

В этой формуле обозначены:

  • nпр и nобр частоты вращения магнитного поля статора в прямом и обратном направлениях;

  • n1 — скорость вращающегося магнитного потока (об/мин);

  • p — число пар полюсов;

  • f — частота тока в обмотке статора.

Теперь рукой придадим вращение двигателю в одну сторону, и он сразу подхватит движение за счет возникновения вращающегося момента, вызванного скольжением ротора относительно разных магнитных потоков прямого и обратного направлений.

Примем, что магнитный поток прямого направления совпадает с вращением ротора, а обратный, соответственно, будет противоположен. Если обозначить через n2 частоту вращения якоря в об/мин, то можно записать выражение n2 < n1.

При этом обозначим Sпр = (n1-n2)/n1 = S.

Здесь индексами S и Sпр названы скольжения асинхронного двигателя и ротора относительного магнитного потока прямого направления.

У обратного потока скольжение Sобр выразится аналогичной формулой, но со сменой знака n2.

Sобр = (n1 - (-n2))/n1 = 2-Sпр.

В соответствии с законом электромагнитной индукции под действием прямого и обратного магнитных потоков в обмотке ротора станет действовать электродвижущая сила, которая создаст в ней токи таких же направлений I2пр и I2обр.

Их частота (в герцах) будет прямо пропорциональна величине скольжения.

f2пр=f1∙Sпр;

f2обр=f1∙Sобр.

Причем частота f2обр, образованная наведенным током I2обр, значительно превышает частоту f2пр.

Например, электродвигатель работает от сети 50 Гц с n1=1500, а n2=1440 оборотов в минуту. Его ротор имеет скольжение относительно магнитного потока прямого направления Sпр=0,04 и частоту тока f2пр=2 Гц. Обратное же скольжение Sобр=1,96, а частота тока f2обр=98 Гц.

На основании закона Ампера при взаимодействии тока I2пр и магнитного поля Фпр появится вращающий момент Мпр.

Мпр=сМ∙Фпр∙I2пр∙cosφ2пр.

Здесь величина постоянного коэффициента сМ зависит от конструкции двигателя.

При этом также действует обратный магнитный поток Мобр, который вычисляется по выражению:

Мобр=сМ∙Фобр∙I2обр∙cosφ2обр.

В итоге взаимодействия этих двух потоков появится результирующий:

М= Мпр-Мобр.

Внимание! При вращении ротора в нем наводятся токи разной частоты, которые создают моменты сил с разными направлениями. Поэтому якорь двигателя будет совершать вращение под действием пульсирующего магнитного поля в ту сторону, с которой он начал вращение.

Во время преодоления однофазным двигателем номинальной нагрузки создается небольшое скольжение с основной долей прямого крутящего момента Мпр. Противодействие тормозного, обратного магнитного поля Мобр сказывается совсем незначительно из-за различия частот токов прямого и обратного направлений.

f2обр обратного тока значительно превышает f2пр, а создаваемое индуктивное сопротивление Х2обр сильно превышает активную составляющую и обеспечивает большое размагничивающее действие обратного магнитного потока Фобр, который в итоге этого уменьшается.

Поскольку коэффициент мощности у двигателя под нагрузкой небольшой, то обратный магнитный поток не может оказать сильное воздействие на вращающийся ротор.

Когда же одна фаза сети подана на двигатель с неподвижным ротором (n2=0), то скольжения, как прямое, так и обратное равны единице, а магнитные поля и силы прямого и обратного потоков уравновешены и вращения не возникает. Поэтому от подачи одной фазы невозможно раскрутить якорь электродвигателя.

Как быстро определить частоту вращения двигателя:

Как создается вращение ротора у однофазного асинхронного двигателя

За всю историю эксплуатации подобных устройств разработаны следующие конструкторские решения:

1. ручная раскрутка вала рукой или шнуром;

2. использование дополнительной обмотки, подключаемой на время запуска за счет омического, емкостного или индуктивного сопротивления;

3. расщепление короткозамкнутым магнитным витком магнитопровода статора.

Первый способ использовался в начальных разработках и не стал применяться в дальнейшем из-за возможных рисков получения травм при запуске, хотя он не требует подключения дополнительных цепочек.

Применение фазосдвигающей обмотки в статоре

Чтобы придать начальное вращение ротору к статорной обмотке дополнительно на момент запуска подключают еще одну вспомогательную, но только сдвинутую по углу на 90 градусов. Ее выполняют более толстым проводом для пропускания бо́льших токов, чем протекающие в рабочей.

Схема подключения такого двигателя показана на рисунке справа.

Здесь для включения применяется кнопка типа ПНВС, которая специально создана для таких двигателей и широко использовалась в работе стиральных машин, выпускаемых при СССР. У этой кнопки сразу включаются 3 контакта таким образом, что два крайних после нажатия и отпускания остаются зафиксированы во включенном состоянии, а средний — кратковременно замыкается, а потом под действием пружины возвращается в исходное положение.

Замкнутые же крайние контакты можно отключить нажатием на соседнюю кнопку «Стоп».

Кроме кнопочного выключателя для отключений дополнительной обмотки в автоматическом режиме используются:

1. центробежные переключатели;

2. дифференциальные или токовые реле;

3. механические таймеры времени.

Для улучшения запуска двигателя под нагрузкой применяются дополнительные элементы в фазосдвигающей обмотке.

Подключение однофазного двигателя с пусковым сопротивлением

В такой схеме к статорной дополнительной обмотке последовательно монтируется омическое сопротивление. При этом намотка витков выполняется биффилярным способом, обеспечивающим коэффициент самоиндукции катушки очень близким к нулю.

За счет выполнения этих двух приемов при прохождении токов по разным обмоткам между ними возникает сдвиг по фазе порядка 30 градусов, чего вполне достаточно. Разность углов создается за счет изменения комплексных сопротивлений в каждой цепи.

При этом методе еще может встречаться пусковая обмотка с заниженной индуктивностью и увеличенным сопротивлением. Для этого применяют намотку с маленьким числом витков провода заниженного поперечного сечения.

Подключение однофазного двигателя с конденсаторным запуском

Емкостной сдвиг токов по фазе позволяет создать кратковременное подключение обмотки с последовательно соединенным конденсатором. Эта цепочка работает только во время выхода двигателя на режим, а затем отключается.

У конденсаторного запуска создается наибольший крутящий момент и более высокий коэффициент мощности, чем при резистивном или индуктивном способе запуска. Он может достигать величины 45÷50% от номинального значения.

В отдельных схемах к цепочке рабочей обмотки, которая постоянно включена, тоже добавляют емкость. За счет этого добиваются отклонения токов в обмотках на угол порядка π/2. При этом в статоре сильно заметен сдвиг максимумов амплитуд, который обеспечивает хороший крутящий момент на валу.

За счет этого технического приема двигатель при пуске способен выработать больше мощности. Однако, такой метод используют только с приводами тяжелого запуска, например, для раскрутки барабана стиральной машины, заполненного бельем с водой.

Конденсаторный запуск позволяет изменять направление вращения якоря. Для этого достаточно сменить полярность подключения пусковой или рабочей обмотки.

Подключение однофазного двигателя с расщепленными полюсами

У асинхронных двигателей с небольшой мощностью порядка 100 Вт используют расщепление магнитного потока статора за счет включения в полюс магнитопровода короткозамкнутого медного витка.

Разрезанный на две части такой полюс создает дополнительное магнитное поле, которое сдвинуто от основного по углу и ослабляет его в месте охваченного витком. За счет этого создается эллиптическое вращающееся поле, образующее момент вращения постоянного направления.

В подобных конструкциях можно встретить магнитные шунты, выполненные стальными пластинками, которые замыкают края наконечников статорных полюсов.

Двигатели подобных конструкций можно встретить в вентиляторных устройствах обдува воздуха. Они не обладают возможностью реверса.

Как определить рабочую и пусковую обмотки у однофазного двигателя

Однофазные двигатели - это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные  двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

Автор: Л. Рыженков

Редактировал А. Повный

Конденсаторная обмотка. Схемы подключения асинхронного и синхронного однофазных двигателей

Однофазный асинхронный двигатель - маломощный механизм до 10 кВт. Однако благодаря своей компактности и особенностями действия, его использование очень большое.

Сфера применения: бытовые приборы с однофазным током. Однофазные асинхронные электродвигатели применяются для холодильников, центрифуг, стиральных машин. Часто используется для маломощных вентиляторов.

Приборы с одной фазой используются и в промышленности, но не так часто, как многофазные агрегаты.

  • Типы однофазных моторов
  • Принцип работы

Устройство и схема подключения АД

Интересно! Трехфазный асинхронный двигатель можно использовать для работы в однофазном режиме. Предварительно необходимо провести расчет.

У статора две электрообмотки. Одна из них рабочая, которая является основной. Вторая пусковая и нужна, чтобы осуществлять пуск устройства. Отличие однофазовых моторов - отсутствие момента впуска. Ротор напоминает беличью клетку по структуре.Ток одной фазы производит магнитное поле. Оно состоит из двух полей. Включая устройство, ротор двигателя неподвижен.

Расчет результирующего момента при неподвижном роторе лежит в основе магнитных полей образующих два вращающихся момента.

Противоположные моменты обозначаются М.

n – частота вращения

Если неподвижную часть задействовать, тогда наступит вращающий момент. Из-за его недоступности при запуске, двигатели оборудованы дополнительным пусковым устройством.

Отличие однофазных асинхронных двигателей от трёхфазных - особенности статора. Пазы имеютдвухфазовую обмотку. Одна будет основной или рабочей, а вторая именуется пусковой.

Магнитные оси находятся по отношению друг к другу на 90 градусов. Включенная рабочая фаза не вызывает вращение ротора по причине неподвижной оси магнитного поля.

Существуют специальные программы для расчета обмоток статора.

Типы однофазных моторов

Различают бифилярный и конденсаторный механизм.

Бифилярная обмотка не используется при постоянном режиме. Иначе значение КПД снижается. Набирая обороты, она обрывается. Обмотка пуска включается на несколько секунд. Расчет работы по 3 секунды до 30 раз в 60 минут. Превышение запусков могут привести к перегреву витков.

Фаза расщепленная, цепь вспомогательной обмотки включается во время запуска. Для достижения пускового момента необходимо создать круговое магнитное поле. Использование конденсатора обеспечивает лучший пусковой момент. Двигатели с включенными конденсаторами в цепи являются конденсаторными. Работают на основе вращения поля магнитов. У конденсаторного устройства две катушки, которые всегда под напряжением.

Принцип работы

В основе принципа действия находится короткозамкнутый ротор. Магнитное поле представлено в виде двух кругов с противоположными последовательностями, то есть поля вращаются в разные стороны, но с одинаковой скоростью.Если ротор предварительно разогнать в нужную сторону, то он продолжит вращение в ту же сторону.

Поэтому запускают однофазный АД, нажав кнопку пуска. При этом вызывается возбуждение в статоре. Токи активируют магнитное поле вращаться, а в воздушном зазоре возникает магнитная индукция. За несколько секунд разгон ротора равняется номинальной скорости.

Отпуская кнопку впуска, двигатель переходит с режима двух фаз на одну фазу. Однофазовый режим поддерживается составляющей переменного поля магнитов, которая вращается быстрее ротора из-за скольжения.

Для улучшения работы однофазного АД встраивается центробежный выключатель и реле с размыкающими контактами.

Центробежный выключатель прерывает пуск статорной обмотки на автомате, если скорость ротора номинальная. А тепловое реле отключает двухфазную обмотку от сети при их перегреве.

Изменение направления роторного вращения получается при перемене направления тока в любой из фаз обмотки при запуске. Достигается это нажатием пусковой кнопки и перестановки двух или одной металлических пластин.

Чтобы образовался фазовый сдвиг необходимо добавить в цепь резистор, дроссель иди конденсатор. Все они являются фазозаменяющими элементами.

Во время запуска двигателя работает две фазы, а далее одна.

Преимущества:

  • большая двигательная способность благодаря неимению коллектора;
  • небольшой размер и масса;
  • недорогая стоимость в сравнении с многофазными;
  • питание от синусоидальной сети;
  • простая конструкция из-за короткозамкнутого ротора.

Недостатки:

  • отсутствие или малый пусковой момент, а также низкий коэффициент полезного действия;
  • узкий диапазон регулировки частоты вращения.

Совет! Чтобы приобрести качественный однофазный мотор, выбирайте надежного производителя. Например, АИРЕ, Siemens, Emod. Проверяйте наличие документов.

Стоимость однофазного асинхронного двигателя зависит от его мощности. Средняя цена варьирует от 2,5 тысячи рублей до 9 тысяч.Приобрести однофазовые асинхронные двигатели можно в магазинах или в интернете.

При правильном расчете и принципе действия, однофазный асинхронный двигатель будет служить долго и эффективно.

Данная публикация будет, непременно, полезна новеньким и для тех, кто любит своими руками и головой делать различные вещи, не имея простых познаний, но владея неплохой сообразительностью. Эта маленькая статейка вам в жизни очень понадобится. Знать устройство пусковой и рабочей обмоток, нужно непременно. Я бы даже сравнил это, как в математике, с таблицей умножения. Начну с того что, однофазовые движки имеют две разновидности обмоток – пусковую и рабочую. Эти обмотки отличаются и по сечению провода и по количеству витков. Осознав один раз, вы я думаю, уже это не забудете никогда.

Рабочая обмотка огромным сечением

1-ое – рабочая обмотка всегда имеет сечение провода большее , а как следует ее сопротивление будет меньше. Поглядите на фото наглядно видно, что сечение проводов различное. Обмотка с наименьшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Наглядно показаны обмотки

А сейчас несколько примеров, с которыми вы сможете столкнуться:

Если у мотора 4 вывода, то обнаружив концы обмоток и после замера, вы сейчас просто разберетесь в этих 4 проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая . Подключается все очень просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из их различия нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет поменяются, от подключения пусковой обмотки, а конкретно – меняя концы пусковой обмотки.

Последующий пример. Это когда движок имеет 3 вывода. Тут замеры будут смотреться последующим образом, к примеру – 10 ом , 25 ом , 15 ом . После нескольких измерений найдите кончик, от которого показания, с 2-мя другими, будут 15 ом и 10 ом . Это и будет, один из сетевых проводов. Кончик, который указывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Тут, чтоб поменять вращение, нужно будет добираться до схемы обмотки.

Очередной пример, когда замеры могут демонстрировать 10 ом , 10 ом , 20 ом . Это тоже одина из разновидностей обмоток. Такие, шли на неких моделях стиральных машин, ну и не только лишь. В этих движках, рабочая и пусковая – однообразные обмотки (по конструкции трехфазных обмоток). Тут различия нет, какой у вас будет рабочая, а какая пусковая. Подключение пусковой, также осуществляется через конденсатор. Рекомендую прочесть ссылки, которые установлены в статье.

Вот кратко и все, что необходимо знать вам по этому вопросу.

Сегодня мы рассмотрим подключение однофазного двигателя переменного тока. К таким относят асинхронные и синхронные моторы, питающиеся от одной фазы, которая обычно имеет напряжение 220 Вольт. Они очень распространены в бытовой сфере и мелком производстве, частном предпринимательстве.

Для разгона асинхронного двигателя требуется создать вращающееся магнитное поле. С этим легко справляется трехфазный источник питания, где фазы сдвинуты друг относительно друга на 120 градусов. Но если речь идет о том, как подключить однофазный электродвигатель, то встает проблема: без сдвига фаз вал не начнет вращаться.

Внутри однофазного асинхронного мотора располагаются две обмотки: пусковая и рабочая. Если обеспечить сдвиг фаз в них, то магнитное поле станет вращающимся. А это главное условие для запуска электродвигателя. Сдвигать фазы можно путем добавочного сопротивления (резистора) или индуктивной катушки. Но чаще всего используют емкости – пусковой и/или рабочий конденсаторы.

С пусковой емкостью

В большинстве случаев схема включает в себя только пусковой конденсатор. Он активен только во время запуска мотора. Поэтому способ хорош, когда пуск обещает быть тяжелым, в противном случае вал не сможет разгоняться из-за небольшого начального момента. После разгона пусковой конденсатор отключается, и работа продолжается без него.

Схема подключения двигателя со вспомогательной емкостью представлена на рисунке выше. Для ее реализации вам потребуется реле или, как минимум, одна кнопка, которую вы будете зажимать на 3 секунды во время запуска мотора в ход. Вспомогательный конденсатор вместе со вспомогательной обмоткой включаются в цепь лишь на некоторое время.

Такая схема обеспечивает оптимальный начальный крутящий момент, если имеют место незначительные броски переменного тока во время пуска. Но есть и недостаток – при работе в номинальном режиме технические характеристики падают. Это обусловлено формой магнитного поля рабочей обмотки: оно у нее овальное, а не круговое.

С рабочей емкостью

Если пуск легкий, а работа тяжелая, то вместо пускового конденсатора понадобится рабочий. Схема подключения показана ниже. Особенность заключается в том, что рабочая емкость вместе с рабочей обмоткой включена в цепь постоянно.

Схема обеспечивает хорошие характеристики при работе в номинальном режиме.

С обоими конденсаторами

Компромиссное решение – использование вспомогательной и рабочей емкости одновременно. Этот способ идеален, если двигатель переменного тока пускается в ход уже с нагрузкой, и сама работа тяжела для него. Посмотрите, схема ниже – это словно две схемы (с рабочей и вспомогательной емкостью), наложенные друг на друга. При запуске на несколько секунд будет включаться пусковой механизм, а второй накопитель будет активен все время: от пуска до завершения работы.

Расчет емкостей

Наибольшую сложность для начинающих представляет расчет емкости конденсаторов. Профессионалы подбирают их опытным путем, прислушиваясь к мотору во время запуска и работы. Так они определяют, подходит накопитель, или нужно поискать другой. Но с небольшой погрешностью в большинстве случаев емкость можно рассчитать так:

  • Для рабочего накопителя: 0,7-0,8 мкФ на 1000 Ватт мощности электрического двигателя;
  • Для пускового конденсатора: больше в 2,5 раза.

Пример: у вас асинхронный однофазный электродвигатель на 2 кВт. Это 2000 Ватт. Значит, при подключении с рабочей емкостью нужно запастись накопителем 1,4-1,6 мкФ. Для пусковой потребуется 3,5-4 мкФ.

Подключение однофазного синхронного электродвигателя

Несмотря на сложность конструкции синхронных двигателей, они имеют много преимуществ перед асинхронными. Главное – это низкая чувствительность к скачкам напряжения, ведущих к резкому уменьшению или увеличению силы тока. Не менее значим и тот факт, что синхронные моторы могут работать даже с перегрузкой, не говоря уже об оптимальном режиме реактивной энергии и вращении вала с постоянной скоростью. Однако подключение – трудоемкий процесс, и это уже недостаток.

Метод разгона

Нельзя пустить в ход однофазный синхронный двигатель, просто подав питание на его обмотки. Потому что в момент включения направление питающего тока в статорных намотках соответствует рисунку (а). В это время на ротор, который еще находится в состоянии покоя, действует пара сил, которая будет пытаться крутить вал по часовой стрелке. Но через половину периода в статорных намотках ток поменяет свое направление. Поэтому пара сил будет уже действовать в обратном направлении, поворачивая вал против часов стрелки, как на рисунке (б). Поскольку ротор обладает большой инертностью, он так и не сдвинется с места.

Чтобы заставить ротор вращаться, необходимо, чтобы он успевал сделать хотя бы половину оборота, чтобы изменение направления тока не повиляло на его вращение. Это возможно, если разогнать вал при помощи посторонних сил. Это можно сделать двумя путями:

  1. Вручную;
  2. С использованием второго двигателя.

Собственной силой рук можно разогнать только маломощные синхронные электродвигатели. А для средне- и высокомощных агрегатов придется использовать другой мотор.

При разгоне с посторонней силой ротор начинает вращаться со скоростью, близкой к синхронной. Потом только включается обмотка возбуждения, и затем – статорная намотка.

Асинхронный пуск синхронного мотора

Если в наконечниках на полюсах ротора уложены стержни из металла, и они соединены между собой по бокам кольцами, то мотор должен запускаться асинхронным методом. Эти стержни играют роль вспомогательной обмотки, которая есть у асинхронного двигателя. При этом намотку возбуждения закорачивают с помощью разрядного резистора, а статорную обмотку подключают к сети. Только так можно обеспечить такой же разгон, как и у асинхронного электродвигателя. Но после того, как скорость вращения максимально приблизится к синхронной (достаточно 95% от нее), намотку возбуждения соединяют с источником постоянного тока. Скорость становится полностью синхронной, что влечет за собой снижение ЭДС индукции вспомогательной обмотки вплоть до нуля. И она отключается автоматически.

26. СХЕМЫ ОБМОТОК ОДНОФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ

В однофазных двигателях с пусковой обмоткой главная обмотка обычно занимает 2 / 3 , а вспомогательная - 1 / 3 общего числа пазов статора. В этих двигателях число пазов на полюс для каждой фазы определяется по формулам:

где q A - число пазов на полюс главной фазы; q В - число пазов на полюс вспомогательной фазы; z A = 2 / 3 - число пазов, занимаемых главной фазой; z B = 1 / 3 - число пазов, занимаемых вспомогательной фазой; z - общее число пазов; 2р - число полюсов.

В однофазных конденсаторных двигателях пазы статора обычно делят поровну между обеими фазами, т. е. z A =z B , и число пазов на полюс определяется по формуле

Шаг по пазам для однофазных обмоток определяется так же, как и для трехфазных. Двухслойные обмотки выполняются с укорочением обычно на 1 / 3 полюсного деления с равными шагами для главной и вспомогательной обмоток. Шаг двухслойной обмотки

Соединение катушечных групп и образование параллельных ветвей в однофазных обмотках производится по тем же правилам, что и для трехфазных обмоток.

При построении схем двигателей с повышенным сопротивлением пусковой фазы надо учитывать наличие в ней бифилярной обмотки.

Для удобства ремонта пусковую обмотку обычно располагают поверх главной (ближе к клину).

Примерный порядок составления схемы однофазной обмотки двигателя с пусковым элементом. Последовательность составления схемы однослойной обмотки разберем на примере

2р = 4, z = 24.

Сначала находят число пазов, занимаемых главной фазой,

Число пазов на полюс главной фазы

Число пазов на полюс вспомогательной фазы в два раза меньше, чем главной, т. е.

Далее на чертеже надо представить последовательность чередования пазов главной и вспомогательной фаз (рис. 60, а) и проставить направление тока в главной фазе, исходя из правил: под соседними полюсами направление тока меняется на противоположное (рис. 60, б ). Чтобы на схеме не оказалась разрезанной катушка главной фазы при выполнении наиболее распространенного типа обмотки вразвалку, первую катушечную группу разбивают на две половины (пазы 1,2 и 23,24).

В соответствии с проставленным направлением тока соединяют пазовые части катушек, в результате этого образуются катушечные группы или полугруппы. При этом возможны различные варианты. При диаметральном шаге

одинаковом для всех катушек, получается простая шаблонная обмотка (рис. 60, в ), число катушечных групп которой равно числу пар полюсов р. Но такая обмотка почти не применяется ввиду больших размеров лобовых частей. Если разделить каждую катушечную группу на две полугруппы, получим шаблонную обмотку вразвалку (рис. 60, г) с меньшим шагом и меньшей длиной витка. Однако из-за большой компактности лобовых частей чаще применяется концентрическая обмотка вразвалку (рис. 60,5). При больших значениях q A используется также концентрическая обмотка, у которой катушечная группа подразделяется на три полугруппы (см. рис. 68). По виду лобовых частей эта обмотка напоминает трехплоскостную трехфазную концентрическую.

Начало фазы может быть в принципе выбрано из любого паза, исходя из удобства выполнения обмотки. Начиная обход всех пазов из первого паза и следя за направлением тока, соединяем катушечные группы (полугруппы) между собой (рис. 60, е) и няходим ко-

Рис. 60. Построение схемы однослойной обмотки однофазного двигателя с пусковым элементом: а - последовательность чередования пазов главной и вспомогательной фаз. б - направление тока в пазовых частях катушек главной фазы, в - простая шаблонная обмотка, г - шаблонная обмотка вразвалку, д - концентрическая обмотка вразвалку, е - схема главной и вспомогательной фаз концентрической обмотки вразвалку

нец фазы, обойдя все пазы рабочей обмотки. Соединение полугрупп производится по правилу: конец полугруппы соединяется с концом соседней полугруппы той же фазы, начало - с началом, т. е. так же, как и в трехфазной однослойной обмотке вразвалку, где катушечная группа разделена на две полугруппы.

Рис. 61. Однослойные обмотки вразвалку однофазных двигателей при 2р=2, z=12: а - шаблонная, б - концентрическая

Рис. 62. Однослойная (шаблонная вразвалку) обмотка однофазного двигателя при 2р=4, z=36

Схему вспомогательной фазы выполняют по тем же правилам, только она имеет обычно меньшее число катушек в группе (полугруппе). Шаг ее может быть таким же, как у главной фазы или иным.

Типичные схемы однослойных обмоток двигателей с пусковыми элементами приведены на рис. 61,62.

Схему двухслойной обмотки двигателя с пусковым элементом можно составить в такой последовательности. Сначала определяют шаг

обмотки, число пазов на полюс для главной и вспомогательной фаз q A и q B . В соответствии с шагом обмотки и числом катушек в группе, равным q A , вычерчивается первая катушечная группа главной фазы (рис. 63,64), рядом с ней катушечная группа вспомогательной фазы, затем опять катушечная группа главной фазы и т. д. Шаги по пазам для обеих фаз берутся одинаковыми. Проставляется направление тока в верхних сторонах катушек главной фазы (под соседними полюсами меняется на противоположное, как и в одно-

Рис. 63. Двухслойная обмотка однофазного двигателя при 2р=2, z=18, q A = 6, q B = 3, y A =y B =6(1-7)

Рис. 64. Двухслойная обмотка однофазного двигателя при 2р=4, z=24, q A =4, q B =2, у А =у B =4(1-5)

слойной обмотке). Последовательное соединение катушечных групп в фазе также выполняется по правилу: конец с концом, начало с началом, при этом не будет нарушена полярность полюсов. Соединения во вспомогательной фазе производятся аналогичным образом.

Примерный порядок составления схемы однофазной однослойной обмотки двигателя с повышенным сопротивлением вспомогательной фазы. Схема главной фазы у двигателя с повышенным сопротивле-

Рис. 65. Выполнение катушки с бифилярной обмоткой: а - катушка, разделенная на две секции, б - катушка с бифилярной обмоткой, в - обозначение катушки с бифилярной обмоткой на схеме; 1 - основная секция, 2 - бифилярная секция, H и K - начало и конец катушки

нием вспомогательной фазы такая же, как и у двигателей с пусковыми элементами.

При составлении схемы вспомогательной фазы надо учитывать, что в каждой катушке часть ее витков намотана встречно. Это уменьшает число эффективных проводников в пазу. Встречно намотанные витки нейтрализуют действие такого же количества витков, намотанных в основном направлении, образуя бифилярную обмотку, поэтому для нахождения числа эффективных витков в катушке (эффективных проводников в пазу) надо из общего числа вычесть удвоенное число встречно намотанных витков. Если, например, в пазу лежит катушка, в которой всего 81 виток, из них встречно намотаны 22, то число эффективных проводников в пазу будет: 81-2x22=37.

Для определения числа встречно намотанных витков при известных общем числе проводников в пазу и числе эффективных проводников в пазу надо произвести обратное действие, т. е. из общего числа вычесть число эффективных проводников и полученный результат разделить на два. При общем числе проводников 81 и числе эффективных - 37 число встречно намотанных витков должно быть:

Катушку с бифилярной обмоткой можно получить, если уложить в одни и те же пазы две секции катушки, одна из которых поворачивается на 180° вокруг параллельной пазам оси. Правая и левая стороны повернутой секции при этом меняются местами (рис. 65). В пазах, где расположена катушка с бифилярной обмоткой, ток

Рис. 66. Однослойная концентрическая вразвалку обмотка при 2р=4, z=24 однофазного двигателя с повышенным сопротивлением вспомогательной обмотки: а - катушка с бифилярной обмоткой изображена в виде двух секций, б - то же, в виде целой катушки

Рис. 67. Однослойная концентрическая вразвалку обмотка при 2р=2, z=18 однофазного двигателя с повышенным сопротивлением вспомогательной фазы: а - при намотке против часовой стрелки, б - при намотке по часовой стрелке

Рис. 68. Однослойная концентрическая с разбивкой катушечной группы на три части обмотка при 2р=2, z=24 однофазного двигателя с повышенным сопротивлением вспомогательной фазы

Рис. 69. Однослойная концентрическая с разбивкой катушечной группы на три части обмотка при 2р=2, z=24 однофазного двигателя с повышенным сопротивлением вспомогательной фазы и соединением главной фазы в две параллельные ветви

проходит по одной секции в едином направлении, по другой - в противоположном. Полярность полюсов определяется направлением тока в катушке с большим числом витков, поэтому секцию с большим числом витков условно называют основной, а с меньшим - бифилярной.

На рис. 66,а представлена схема с бифилярной обмоткой во вспомогательной фазе, бифилярная секция условно показана внутри основной. Обычно катушки с бифилярной обмоткой на схемах изоб-

Рис. 70. Однослойная концентрическая обмотка вразвалку однофазного конденсаторного двигателя при 2р=2, z=18

ражаются в виде целой катушки с петлей, в которой изменяется направление тока (рис. 65, в и рис. 66, б).

Катушки и катушечные группы с бифилярной обмоткой должны быть соединены таким образом, чтобы полярность под соседними полюсами вспомогательной фазы чередовалась; полярность же полюсов определяется направлением тока в основных секциях.

Типичные схемы обмоток двигателей с повышенным сопротивлением вспомогательной фазы приведены на рис. 67-69.

Всякая обмотка может быть намотана либо по часовой стрелке, либо против нее, если смотреть на статор со стороны схемы. Это определяется навыками обмотчика и принятой технологией изготовления. Пример схемы при двух различных направлениях намотки приведен на рис. 67.

Примерный порядок составления схемы обмотки конденсаторного двигателя. Схемы однофазных конденсаторных двигателей строятся так же, как и схемы однофазных с пусковыми элементами, только при этом надо учитывать, что числа пазов на полюс главной и вспомогательной фаз одинаковы и поэтому схемы обеих фаз также получаются одинаковыми.

Типичные схемы однофазных конденсаторных двигателей приведены на рис. 70-76.

Рис. 71. Однослойная концентрическая обмотка вразвалку однофазного конденсаторного двигателя при 2р=2, z=24

Рис. 72. Однослойная концентрическая обмотка вразвалку однофазного конденсаторного двигателя при 2р=2, z=24 и соединения каждой из фаз в две параллельные ветви

Рис. 73. Однослойная концентрическая обмотка с «расчесанными» катушками однофазного конденсаторного двигателя при 2р=4, z=24

Рис. 74. Двухслойная обмотка однофазного конденсаторного двигателя при 2р=4, z=24, q А =q B =3, y A =y B =5(1-6)

В ряде случаев для конденсаторных двигателей характерна наличие в обеих фазах «расчесанных» катушек с половинным числом витков. На схеме рис. 73 показаны четыре такие катушки.

Обмотка, представленная на рис. 75, 76, из-за дробного числа пазов на полюс имеет признаки шаблонной вразвалку и двухслойной обмоток и поэтому названа комбинированной.

Как определить рабочую и пусковую обмотки однофазного электродвигателя

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.

Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.

В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):

  • КД - конденсаторный двигатель
  • 25 - мощность 25 (Вт)
  • У4 - климатическое исполнение

Вот его внешний вид.

Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:

  • рабочая (С1-С2) - провода красного цвета
  • пусковая (В1-В2) - провода синего цвета

В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: подключение однофазного конденсаторного двигателя.

Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.

Зная основы электротехники. можно с уверенностью сказать: чем больше сечение проводов, тем меньше их сопротивление, и наоборот, чем меньше сечение проводов, тем больше их сопротивление.

В моем примере разница в сечении проводов не видна, т.к. они тонкие и на глаз их отличить не возможно.

2 . Измерение омического сопротивления обмоток

Даже если разницу в сечении проводов видно не вооруженным глазом, то я Вам все равно рекомендую измерять величину сопротивления обмоток. Таким образом, мы заодно и проверим их целостность.

Для этого воспользуемся цифровым мультиметром М890D. Сейчас я не буду рассказывать Вам о том, как пользоваться мультиметром, об этом читайте здесь:

Снимаем изоляцию с проводов.

Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.

Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).

Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).

Делаем вывод: первая обмотка - пусковая, вторая - рабочая.

Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).

По новым ГОСТам обмотки однофазного двигателя обозначаются следующим образом:

У двигателя КД-25-У4, взятого в пример, цифровая маркировка выполнена еще по-старому:

Чтобы не было несоответствий маркировки проводов и схемы, изображенной на бирке двигателя, маркировку я оставил старую.

Одеваю бирки на провода. Вот что получилось.

Для справки: Многие ошибаются, когда говорят, что вращение двигателя можно изменить путем перестановки сетевой вилки (смены полюсов питающего напряжения). Это не правильно. Чтобы изменить направление вращения, нужно поменять местами концы пусковой или рабочей обмоток. Только так.

Мы рассмотрели случай, когда в клеммник однофазного двигателя выведено 4 провода. А бывает и так, что в клеммник выведено всего 3 провода.

В этом случае рабочая и пусковая обмотки соединяются не в клеммнике электродвигателя, а внутри его корпуса.

Как быть в таком случае?

Все делаем аналогично. Производим замер сопротивления между каждыми проводами. Мысленно обозначим их, как 1, 2 и 3.

Вот, что у меня получилось:

Отсюда делаем следующий вывод:

  • (1-2) - пусковая обмотка
  • (2-3) - рабочая обмотка
  • (1-3) - пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)

Для справки: при таком соединении обмоток реверс однофазного двигателя тоже возможен. Если очень хочется, то можно вскрыть корпус двигателя, найти место соединения пусковой и рабочей обмоток, разъединить это соединение и вывести в клеммник уже 4 провода, как в первом случае. Но если у Вас однофазный двигатель является конденсаторным, как в моем случае с КД-25, то его реверс можно осуществить путем переключения фазы питающего напряжения.

P.S. На этом все. Если есть вопросы по материалу статьи, то задавайте их в комментариях. Спасибо за внимание.

Добрый вечер, Дмитрий! Я сам работаю электриком в ЭТЛ. У меня вопрос по поводу испытаний кабельной линии из сшитого полиетилена. Вы сталкивались с этим, какое подавали напряжение, какие были токи утечки, сколько по времени проходит испытание одной фазы? Заранее спасибо. если можно отправьте свой ответ мне на почту.

Артем, здравствуйте. Об испытании кабелей из сшитого полиэтилена я писал в комментариях в этой статье.

здравствуйте Дмитрий. а не могли бы вы подробно написать статью о масляных выключателях, (соленоид, контактор включения, катушку отключения, его испытания, замеры характеристик) и также испытания силовых трансформатор и его замеры. очень нужно, есть нюансы в голове.

SLV, я планировал написать эти статьи, особенно про разные типы приводов (ПЭ-11, ПС-10, ПЭ-21 и др.), про высоковольтные масляные и вакуумные выключатели, установленные, как в камерах КСО, так и на каретках, но боюсь, что многим посетителям сайта это будет не интересно. Вот постоянно и откладываю…

Здравствуйте, Дмитрий! Вы все очень замечательно объясняете, огромное спасибо! Не могли бы Вы прояснить, что означает в автоматических выключателях, к примеру 6кА или 35кА, если они рассчитаны на один ток срабатывания? И почему у них такая разница в цене?

Борис, значения 4,5 (кА), 6 (кА), 10 (кА) и т.д. означают электродинамическую стойкость аппарата защиты при коротком замыкании в сети, т.е. показывают насколько автомат устойчив к короткому замыканию. Для дома (квартиры) вполне хватит 4,5 (кА), т.к. линии от ТП до жилого дома и от ВРУ до квартир достаточно длинные, они обладают большим активным сопротивлением, что приводит к снижению токов короткого замыкания до значений 0,5-1,5 (кА), а чаще и того меньше.

я весь интернет перерыл, нифига не могу разобрать, книги на работе читал, не могу понять и все.кстати немогли бы вы сказать что все таки значит тангенс диэлектрических потерь масла, вот все про него говорят на работе а никто и толком точно незнает.)

И ещё одно.Раньше многие подключали 3-х фазные двигатели к однофазной цепи, но время ушло.Многие сейчас покупают готовые однофазные.У меня была таблица соотношения мощности двигателя к мощности конденсаторов.А тут один знакомый попросил подключить в гараже движок трехфазник.Таблицу я не нашел,пришлось подбирать. Так вот, нет ли у вас такой таблицы.Они были в старых учебниках по электротехнике.Если есть, прошу опубликовать или отправить на мой E-mail.

C уважением, Николай.


Смотрите также

 
 
Корзина
Товаров: 2 шт.
На сумму: 13 300 р.
Купить
Хит сезона