Фигуры из дерева
Строительство домов из оцилиндрованного бревна
Элементы декора
Фонтаны
Цветочницы и Цветники
Беседки
Вазоны для цветов
Светильники садовые
Кованые изделия
Детская площадка
Купели и Бассейны
Садовая мебель
Урны
Заборчики
8(985)924-88-50
Категории
 
 

Блок питания с регулируемым током и напряжением


Блок питания с регулировкой напряжения и тока

Приветствую всех, особенно начинающих радиолюбителей, поскольку именно они очень часто сталкиваются с проблемой поиска источников питания для своих самоделок и поэтому в ходе этой статьи будет рассмотрен вариант постройки простейшего лабораторного блока питания с возможностью ограничения тока. Наш блок питания может обеспечивать на выходе стабилизированное напряжения от ноля до пятнадцати вольт итог до полутора Ампер, эти параметры можно изменять и походу поясню как это сделать.В проекте специально использованы наиболее доступные компоненты, чтобы ни у кого не возникнет трудности с их поиском, а теперь давайте рассмотрим схему и поймем принцип ее работы.

Схема состоит из трех основных частейСетевой понижающий трансформатор (красным обозначен) он обеспечивает нужные для наших целей выходные параметры, а также гальваническую развязку. В моем варианте был использован трансформатор от блока питания старого кассетного магнитофона, подойдет и любой другой, основные параметры блока питания будут зависеть в первую очередь от трансформатора, притом нужно учитывать один момент — максимальное выходное напряжение лабораторного блока питания будет на несколько вольт меньше, чем напряжение на выпрямителе. Трансформатор подбирается с нужным током, в моем случае имеются две обмотки по 20 вольт, ток каждой из них составляет около 0,7 Ампер, обмотки посвящены параллельно то есть общий ток около полутора ампер. Вторая часть из себя представляет выпрямитель для выпрямления переменного напряжения в постоянку и конденсатор для сглаживания напряжение после выпрямителя и фильтрации помех.

И наконец третий узел это плата самого стабилизатора, давайте ее рассмотрим поподробнее

Уже постоянное напряжение поступает на плату стабилизатора, где стабилизируется до некоторого уровня. В режиме стабилизации будет зависеть от стабилитрона, в нашем случае он на 15 Вольт, именно он задает максимальное выходное напряжение блока питания. Беда в том, что ток у таких стабилитронов не велик, поэтому его нужно усилить с помощью простого каскада усиления по току, построенного на транзисторах VТ 1 и VТ 2, транзисторы подключены таким образом, чтобы обеспечить максимально большое усиление, то есть по сути это аналог составного транзистора.

Регулятор напряжения в лице переменного резистора R1 выполняет функцию простого делителя напряжения и может быть рассмотрен как 2 последовательно соединенных резистора с отводом от места их соединения.Изменяя сопротивление каждого из них мы можем регулировать напряжение. Это напряжение усиливается ранее указанным каскадом.

Второй переменный резистор позволит ограничивать выходной ток. Если такая функция не нужна, то схема будет выглядеть следующим образом.

Теперь подробнее о компонентах, большую их часть, а если точнее все компоненты можно найти в старой аппаратуре, например в телевизорах, усилителях, приемниках, магнитолах и прочей технике.

Также возможно использовать импортные аналоги, которые имеют одинаковое расположение выводов. В архиве также сможете найти некоторые варианты замены транзисторов, как на советские, так и на импортные.

можно использовать готовые мосты, которые можно найти в компьютерных блоках питания или же собрать мост из любых четырех аналогичных диодов с током от двух ампер.

Для увеличения выходного напряжения блока питания сначала нужно найти соответствующий трансформатор, затем заменить стабилитроны на более высоковольтные, скажем на 18 или 24 вольта, будет зависеть от нужного вам выходного напряжения.

Резистор ограничивает ток через стабилитрон, расчет производится исходя из напряжения выпрямителя. Рассчитываю так, чтобы ток через стабилитрон не превышал значение 20-25 миллиампер, в случае стабилитрона на пол ватта и 40-45 мм в случае если стабилитрон одноваттный.

Если под рукой не оказалось нужного стабилитрона, то можно использовать несколько последовательно соединенных с меньшим напряжением, в итоге сумма их напряжение будет равняться конечному напряжению стабилизации. Схема стабилизатора работает в линейном режиме, поэтому силовой транзистор VT 2 нуждается в радиаторе.

А теперь давайте проверим конструкцию в работе

 и как видим напряжения плавно регулируется от нуля до пятнадцати вольт

Теперь проверим функцию ограничения тока, обратите внимание без выходной нагрузки вращая регулятор тока напряжение у нас не будет меняться, что свидетельствует о каретной работе функции ограничения.

Выходной ток также регулируется достаточно плавно, минимальная граница 180 миллиампер.

Максимальный выходной ток в моём случае составляет около полутора ампер, этого вполне достаточно для средних нужд большинства радиолюбителей.Несмотря на простоту конструкции при токах около одного Ампера наблюдаем просадку выходного напряжения меньше 200 милливольт, это очень хороший показатель для стабилизаторов такого класса.Блок питания может переносить короткие замыкания с продолжительностью не более 5 секунд, в этом режиме ток ограничивается в районе одного — семи Ампер.

Монтаж при желании можно сделать навесным,но более красиво смотрится конструкция на печатной плате, тем более, что я ее для вас нарисовал,а файл платы также можете скачать с общим архивом проекта.

В качестве индикаторов советую использовать стрелочные приборы, чтобы не путаться с подключением, хотя можно и цифровые.

По мне это довольно годный вариант в качестве первого блока питания, так что смело собирайте.

Архив к статье: скачать… Автор; АКА КАСЬЯН

Блок питания с регулировкой напряжения и тока своими руками

В этой статье вы узнаете как собрать очень полезные блок питания с регулировкой напряжения и тока своими руками. Все этапы сборки блока питания, а так же некоторые технические моменты, представлены в статье. Данный блок питания будет полезен как начинающим радиолюбителям, так и опытным, вы обязательно найдете где применить этот блок питания!

Автор будет использовать блок питания от ноутбука, который выдает напряжение 15В и ток до 8А. Этого будет вполне достаточно.

К шнуру блока питания нужно припаять подходящий разъем, с помощью которого будет подсоединять блок питания к понижающий схеме.

В качестве понижающего преобразователя был выбран достаточно распространенный модуль, на котором можно изменять как напряжение, так и ток, с помощью вот этих вот 2-ух потенциометров.

Однако автор посчитал такие потенциометры не совсем удобными и поэтому решил заменить их на другие, так как скорее всего потребуется очень точная настройка напряжения. Было решено взять многооборотистый потенциометр, чтобы в дальнейшем облегчить себе задачу.

Настройку тока же будем производить обычным потенциометром, так как тут не нужна большая точность. Но в принципе, вам решать какие потенциометры использовать. Далее очень важный компонент — это вольтамперметр вместе с дисплеем, на котором будут отображаться значения. Для подключения разного рода нагрузок были выбраны банановые штекеры. 

Так же было решено, что брать 5В из порта USB тоже достаточно удобно, потому что таким образом можно запитывать, например, arduino. Поэтому давайте добавим еще один модуль.

Ну что ж, с компонентами разобрались, теперь давайте приступим к работе. Корпус будем изготавливать из фанеры толщиной 8 мм.

А так как у автора в наличие имеется 3d принтер, то он не смог удержаться и использовал его в этом проекте для печати лицевой панели. 3d принтер также использовался потому, что большинство отверстий передней панели абсолютно нестандартного размера, и найти сверла правильного диаметра почти невозможно, а без конца работать напильником тоже не хочется.

Далее следует деревообработка. Тут лучше воспользоваться циркулярной пилой (конечно если она у вас есть), а также можно использовать электролобзик.

Передняя панель печаталась примерно полтора часа. 

В итоге большинство отверстий оказались как раз по размеру, но к сожалению расстояние между отверстиями для банановых штекеров оказались не точными и автору пришлось немножко поработать дрелью. Далее необходимо склеить корпус.

Ну и пока клей сохнет, давайте посмотрим на схему подключения блока питания:

Итак, на вход мы получаем 15 В. Есть выключатель, с помощью которого мы включаем-выключаем схему, и когда он замкнут сразу же запитывается модуль с USB портом. На нем есть понижающий преобразователь, поэтому он запитывается напрямую. Также автор добавил предохранитель. Как только выключатель замыкается, то также запитывается и дисплей с вольтамперметром. Далее главная часть — это основной преобразователь.

Тут у нас конечно же 2 потенциометра, минусовой контакт от преобразователя подключается к дисплею как бы в разрыв цепи, и далее идет на минусовой контакт бананового штекера. Таким образом мы можем измерять ток. А плюсовой же контакт от преобразователя идёт напрямую к контакту бананового штекера, и параллельно к нему подсоединяется контакт от вольтамперметра. Таким образом, мы измеряем напряжение. И в общем то, все, согласитесь, очень просто. Сначала выпаиваем родные потенциометры.

Ну и теперь просто собираем все по схеме.

Итак, все собрано, первый тест.

Для первого теста автор решил подключить мотор.

Как видим, все очень хорошо заработало. Мы также видим, что вольтамперметр показывает какой ток потребляет мотор.

Настройка напряжения тоже отлично работает, но одна из особенностей этого dc-dc преобразователя, это возможность настроить еще и ток. Для этого нам нужно закоротить плюс и минус.

После этого мы можем с помощью нижнего потенциометра настроить ток.

Это очень полезная функция если мы хотим, например, зарядить аккумуляторы или протестировать мощный светодиод.

Ну вот и готов наш блок питания, получилось достаточно симпатично, а главное в деле пригодится обязательно! Спасибо за внимание, делитесь статьёй в соц весях, если понравилось )

Видео самоделки:

Похожие записи

Регулируемый блок питания своими руками

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Блок питания из старой платы компьютера

Stalevik

Мастера покупают изобретения в этом китайском интернет-магазине.

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку. Так он выглядит.

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.

Так выглядит блок питания импульсный на видеокарте.

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал. Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей. Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.

На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора – они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.

Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит – резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.

Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке. Его характеристики: 24 вольта, 0,7 ампера.

Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта? Как получить 24 вольта, не разбирая блок? Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта. Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.

У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.

Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.

Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.

Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.

Как сделать регулировку?

Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор. Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.

Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.

Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.

Видео канала “Технарь”.

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры. Фотографии – разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.

Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Скачать схему с платой.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей. Приступаем к сборке

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

Видео Radioblogful. Видеоблог паяльщика.

Блок регулирования напряжения и тока для простого лабораторного источника питания

В любой радиолюбительской мастерской не обойтись без источника питания с возможностью изменения величины напряжения в широких пределах. Представленное устройство предназначено для регулирования напряжения от полвольта почти до величины входного напряжения и регулирования величины ограничения тока нагрузки. При наличии готового нерегулируемого источника питания напряжением 20-30 В и допустимым током нагрузки до 5 А, этот блок позволит сделать источник универсальным.

Схема

За основу взята распространённая схема (рис.1), обсуждаемая на некоторых радиолюбительских форумах.

Рисунок 1. Вырезка из журнала Радио.

Честно говоря, стабилизированной эту схему назвать нельзя однозначно, но тем не менее я рекомендую её для начинающих радиолюбителей, нуждающихся в регулируемом источнике питания. Схема хороша тем, что позволяет регулировать напряжение в широких пределах, а также ограничивать ток нагрузки, что исключает перегрузку источника питания при коротких замыканиях.

У этой схемы есть один существенный недостаток. При регулировании напряжения, оно изменяется не равномерно. От минимума напряжение нарастает очень медленно, но ближе к максимуму процесс становится настолько стремительным, что точная установка требуемого значения весьма затруднительна. По этому поводу на многих форумах не мало соплей и плевков. Не советую уподобляться истерикам и размазывать сопли по этому поводу, всё, что требуется от настоящего радиолюбителя – включать мозг.

Суть проста. Чтобы получить линейный характер регулирования при нелинейном изменении величины регулирования линейным элементом, нужно скорректировать его характеристику в сторону обратной нелинейности… Вот такая не шуточная шутка получилась :)

Предлагаю Вам свой вариант схемы, в котором применена отечественная элементная база и добавлен элемент коррекции нелинейности регулировки напряжения – рисунок 2.

 
Рисунок 2. Схема блока регулирования напряжения и ограничения тока нагрузки.

Обратите внимание на подстроечный резистор R7. Его роль как раз и заключается в коррекции характеристики регулирования.

В качестве регулирующего элемента я применил транзистор КТ819ГМ (просто оказался в наличии). Он выполнен в массивном металлическом корпусе и рассчитан на ток коллектора до 15А. Этот транзистор необходимо размещать на радиаторе для эффективного теплоотвода.

В качестве шунта R2 я использовал параллельную спайку пяти двухваттных резисторов 5,1 Ом по 2 Вт каждый. Этот шунт я так же вынес за пределы платы, расположив рядом с радиатором транзистора.

У меня не оказалось переменного резистора 470 Ом, поэтому мне пришлось для R5 использовать резистор 1 кОм, но и при этом номинале ток регулируется достаточно равномерно.

Настройка схемы

Исходная схема (рисунок 1) практически не нуждается в настройке. Переработанная схема (рисунок 2) требует настройки коррекции характера регулирования напряжения. Настройка очень проста.

Подайте на вход напряжение питания (желательно от того источника, который будете брать за основу). Переменный резистор R6 выведите в крайнее положение, при котором напряжение выхода будет максимальным. Измерьте напряжение на выходе схемы. Переведите движок резистора R6 как Вам кажется точно в среднее положение. Подстроечным резистором R7 добейтесь на выходе схемы ровно половины того напряжения, которое измеряли при установке на максимум. Собственно – всё.

Данная коррекция не гарантирует абсолютную линейность регулировки, но визуально Вам покажется, что напряжение меняется идеально равномерно.

Применение

Плюс этой схемы заключается в ограничении максимального тока. Её можно использовать для сборки относительно бюджетного варианта источника питания. Для примера, я использовал в качестве преобразователя сетевого напряжения электронный трансформатор для галогенных ламп. У них есть серьёзный недостаток – отсутствие защиты от перегрузки. Но поскольку регулирующая схема ограничивает ток нагрузки, то практически защищает схему первичного преобразования от КЗ.

Файлы

Схема достаточно проста для повторения даже начинающими радиолюбителями, но, если кого интересует готовая печатка, качайте файл - Регулируемый БП 24 В 5 А

Кроме схемы и печатки в архиве содержится файл таблица с графиком, визуально отражающий изменение харауеристики равномерности регулирования при введении в схему корректирующего резистора, может кому то будет интересно, или даже полезно. Там в красных ячейках можно задавать величину сопротивлений переменного и корректирующего резистора. Изменение характеристики визуально можно наблюдать по представленным в файле графикам.

Предупреждение

Показанный в данной статье способ коррекции пригоден далеко не во всех случаях и может быть непреемлем для отдельного ряда задач!

ВНИМАНИЕ!!! Показанный способ коррекции следует использовать с особой осторожностью, зная принцип работы настраиваемого устройства и хорошо представляя, что Вы делаете! В других схемах при определённых положениях движка резисторов могут возникать недопустимые токи, способные вывести из строя резисторы или иные детали рабочего устройства!!! Используя описанный способ коррекции в своём устройстве вы действуете на свой страх и риск, а ещё лучше, представляете, что делаете. Ни какой ответственности за возможные причинённые неисправности Ваших устройств при применении корректирующего резистора по моей схеме лично я не несу.

Данный способ коррекции в конкретной представленной схеме на рисунке 2 абсолютно безопасен при любых номиналах корректирующего резистора и любых положениях движков корректирующего и переменного резисторов R7 и R6.

Пользуйтесь и наслаждайтесь творческим процессом :)


Смотрите также

 
 
Корзина
Товаров: 2 шт.
На сумму: 13 300 р.
Купить
Хит сезона